CBSE Notes, Lectures

CBSE - Mathematics - Polynomials

Polynomials

NCERT Exercise Exercise 2.4

Determine which of the following polynomials has (x + 1) a factor:

Determine which of the following polynomials has (x + 1) a factor:
(i) x3 + x2 + x + 1

(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1 

(iv) x3 - x2 - (2 + √2)x + √2

Answer

(i) If (x + 1) is a factor of p(x) = x3 + x2 + x + 1, p(-1) must be zero. 
Here, p(x) = x3 + x2 + x + 1 
p(-1) = (-1)3 + (-1)2 + (-1) + 1 
= -1 + 1 - 1 + 1 = 0
Therefore, x + 1 is a factor of this polynomial

(ii) If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, p(-1) must be zero. 
Here, p(x) = x4 + x3 + x2 + x + 1 
p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
= 1 - 1 + 1 - 1 + 1 = 1

As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial

(iii)If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2 + x + 1, p(- 1) must be 0. 
p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
= 1 - 3 + 3 - 1 + 1 = 1
As, p(-1) ≠ 0
Therefore, x + 1 is not a factor of this polynomial.

 

(iv) If (x + 1) is a factor of polynomial

p(x) = x3 - x2 - (2 + √2)x + √2, p(- 1) must be 0.

p(-1) =  (-1)3 -  (-1)2 -  (2 + √2) (-1) + √2
= -1 - 1 + 2 + √2 + √2
=2√2
As, p(-1) ≠ 0
Therefore,, x + 1 is not a factor of this polynomial.

.