CBSE Notes, Lectures

CBSE - Mathematics - Areas of Parallelograms and Triangles

Areas of Parallelograms and Triangles

NCERT Exercise Exercise 9.3

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Answer

O is the mid point of AC and BD. (diagonals of bisect each other)

In ΔABC, BO is the median.

∴ ar(AOB) = ar(BOC) --- (i)

also,

In ΔBCD, CO is the median.

∴ ar(BOC) = ar(COD) --- (ii)

In ΔACD, OD is the median.

∴ ar(AOD) = ar(COD) --- (iii)

In ΔABD, AO is the median.

∴ ar(AOD) = ar(AOB) --- (iv)

From equations (i), (ii), (iii) and (iv),

ar(BOC) = ar(COD) = ar(AOD) = ar(AOB)

So, the diagonals of a parallelogram divide it into four triangles of equal area.

.