If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
Given,
Two circles which intersect each other at P and Q.
To prove,
OO' is perpendicular bisector of PQ.
Proof,
In ΔPOO' and ΔQOO',
OP = OQ (Radii)
OO' = OO' (Common)
O'P = OQ (Radii)
∴ ΔPOO' ≅ ΔQOO' (SSS congruence condition)
Thus,
∠POO' = ∠QOO' --- (i)
In ΔPOR and ΔQOR,
OP = OQ (Radii)
∠POR = ∠QOR (from i)
OR = OR (Common)
∴ ΔPOR ≅ ΔQOR (SAS congruence condition)
Thus,
∠PRO = ∠QRO
also,
∠PRO + ∠QRO = 180°
⇒ ∠PRO = ∠QRO = 180°/2 = 90°
Hence,
OO' is perpendicular bisector of PQ.