CBSE Notes, Lectures

CBSE - Mathematics - Real Numbers

Real Numbers

NCERT Exercise Exercise 1.1

Use Euclid's division algorithm to find the HCF of:

(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255

(i) 225 > 135 we always divide greater number with smaller one.

Divide 225 by 135 we get 1 quotient and 90 as remainder so that
225= 135 × 1 + 90

Divide 135 by 90 we get 1 quotient and 45 as remainder so that
135= 90 × 1 + 45

Divide 90 by 45 we get 2 quotient and no remainder so we can write it as
90 = 2 × 45+ 0

As there are no remainder so divisor 45 is our HCF.


(ii) 38220 > 196 we always divide greater number with smaller one.


Divide 38220 by 196 then we get quotient 195 and no remainder so we can write it as
38220 = 196 × 195 + 0

As there is no remainder so divisor 196 is our HCF.

(iii) 867 > 255 we always divide greater number with smaller one.

Divide 867 by 255 then we get quotient 3 and remainder is 102 so we can write it as
867 = 255 × 3 + 102

Divide 255 by 102 then we get quotient 2 and remainder is 51 so we can write it as
255 = 102 × 2 + 51

Divide 102 by 51 we get quotient 2 and no remainder so we can write it as
102 = 51 × 2 + 0

As there is no remainder so divisor 51 is our HCF.

 

.