CBSE Notes, Lectures

CBSE - Mathematics - Pair of Linear Equations in Two Variables

Pair of Linear Equations in Two Variables

NCERT Exercise Exercise 3.4

Solve the following pair of linear equations by the elimination method and the substitution method:
(i) x + y =5 and 2x –3y = 4
(ii) 3x + 4y = 10 and 2x – 2y = 2
(iii) 3x – 5y – 4 = 0 and 9x = 2y + 7
(iv) x/2 + 2y/3 = - 1 and x – y/3 = 3

(i) x + y =5 and 2x –3y = 4
By elimination method
x + y =5 ... (i)
2x –3y = 4 ... (ii)
Multiplying equation (i) by (ii), we get
2x + 2y = 10 ... (iii)
2x –3y = 4 ... (ii)
Subtracting equation (ii) from equation (iii), we get
5y = 6
y = 6/5
Putting the value in equation (i), we get
x = 5 - (6/5) = 19/5

Hence, x = 19/5 and y = 6/5

By substitution methodx + y = 5 ... (i)
Subtracting y both side, we get
x = 5 - y ... (iv)
Putting the value of x in equation (ii) we get
2(5 – y) – 3y = 4
-5y = - 6
y = -6/-5 = 6/5
Putting the value of y in equation (iv) we get
x = 5 – 6/5
x = 19/5
Hence, x = 19/5 and y = 6/5 again 

 

(ii) 3x + 4y = 10 and 2x – 2y = 2
By elimination method
3x + 4y = 10 .... (i)
2x – 2y = 2 ... (ii)
Multiplying equation (ii) by 2, we get
4x – 4y = 4 ... (iii)
3x + 4y = 10 ... (i)
Adding equation (i) and (iii), we get

7x + 0 = 14
Dividing both side by 7, we get
x = 14/7 = 2
Putting in equation (i), we get
3x + 4y = 10
3(2) + 4y = 10
6 + 4y = 10
4y = 10 – 6
4y = 4
y = 4/4 = 1 Hence, answer is x = 2, y = 1

 

By substitution method
3x + 4y = 10 ... (i)
Subtract 3x both side, we get
4y = 10 – 3x
Divide by 4 we get
y = (10 - 3x )/4
Putting this value in equation (ii), we get
2x – 2y = 2 ... (i)
2x – 2(10 - 3x )/4) = 2
Multiply by 4 we get
8x - 2(10 – 3x) = 8
8x - 20 + 6x = 8
14x = 28
x = 28/14 = 2
= (10 - 3x)/4

= 4/4 = 1

Hence, answer is x = 2, y = 1 again.

(iii) 3x – 5y – 4 = 0 and 9x = 2y + 7
By elimination method
3x – 5y – 4 = 0
3x – 5y = 4 ...(i)
9x = 2y + 7
9x – 2= 7 ... (ii)
Multiplying equation (i) by 3, we get
9 x – 15 y = 11 ... (iii)
9x – 2y = 7 ... (ii)
Subtracting equation (ii) from equation (iii), we get
-13y = 5
y = -5/13
Putting value in equation (i), we get
3x – 5y = 4 ... (i)
3x - 5(-5/13) = 4
Multiplying by 13 we get
39x + 25 = 52
39x = 27
x =27/39 = 9/13
Hence our answer is x = 9/13 and y = - 5/13

By substitution method
3x – 5y = 4 ... (i)
Adding 5y both side we get
3x = 4 + 5y
Dividing by 3 we get
x = (4 + 5y )/3 ... (iv)
Putting this value in equation (ii) we get
9x – 2y = 7 ... (ii)
9 ((4 + 5)/3) – 2y = 7
Solve it we get
3(4 + 5y ) – 2y = 7
12 + 15y – 2y = 7
13y = - 5
y = -5/13

Hence we get x = 9/13 and y = - 5/13 again.

 

(iv) x/2 + 2y/3 = - 1 and x – y/3 = 3
By elimination method
x/2 + 2y/3 = -1 ... (i)
x – y/3 = 3 ... (ii)
Multiplying equation (i) by 2, we get
x + 4y/3 = - 2 ... (iii)
x – y/3 = 3 ... (ii)
Subtracting equation (ii) from equation (iii), we get
5y/3 = -5
Dividing by 5 and multiplying by 3, we get
= -15/5
= - 3
Putting this value in equation (ii), we get
x – y/3 = 3 ... (ii)
x – (-3)/3 = 3
x + 1 = 3
x = 2

Hence our answer is x = 2 and y = −3.

By substitution method
x – y/3 = 3 ... (ii)
Add y/3 both side, we get
= 3 + y/3 ... (iv)
Putting this value in equation (i) we get
x/2 + 2y/3 = - 1 ... (i)
(3+ y/3)/2 + 2y/3 = -1
3/2 + y/6 + 2y/3 = - 1
Multiplying by 6, we get
9 + y + 4= - 6
5y = -15
y = - 3

Hence our answer is x = 2 and y = −3

.