CBSE Notes, Lectures

CBSE - Mathematics - Pair of Linear Equations in Two Variables

Pair of Linear Equations in Two Variables

NCERT Exercise Exercise 3.7

Solve the following pair of linear equations.

(i) px + qy = p − q

qx − py = p + q

(ii) ax + by = c

bx + ay = 1 + c

(iii) 

ax + by = a2 + b2

(iv) (a − bx + (a + by = a2− 2ab − b2

(a + b) (x + y) = a2 + b2

(v) 152x − 378y = − 74

− 378+ 152y = − 604

(i)px + qy = p − … (1)

qx − py = p + … (2)

Multiplying equation (1) by p and equation (2) by q, we obtain

p2x + pqy = p2 − pq … (3)

q2x − pqy = pq + q2 … (4)

Adding equations (3) and (4), we obtain

p2x + q2 p2 + q2

(p2 + q2x = p2 + q2

From equation (1), we obtain

p (1) + qy = p − q

qy = − q

y = − 1

 

(ii)ax + by = c … (1)

bx + ay = 1 + c … (2)

Multiplying equation (1) by a and equation (2) by b, we obtain

a2aby ac … (3)

b2x + aby = b + bc … (4)

Subtracting equation (4) from equation (3),

(a2 − b2ac − bc − b

From equation (1), we obtain

ax by = c

Or, bx − ay = 0 … (1)

ax + by = a2 + b2 … (2)

Multiplying equation (1) and (2) by b and respectively, we obtain

b2− aby = 0 … (3)

a2x + aby a3 + ab2 … (4)

Adding equations (3) and (4), we obtain

b2a2x = a3 + ab2

x (b2 + a2) = a (a2 + b2)

x = a

By using (1), we obtain

b (a) − ay = 0

ab − ay = 0

ay = ab

b

(iv) (a − bx + (a + by = a2− 2ab − b2 … (1)

(a + b) (x + y) = a2 + b2

(a + bx + (a + ba2 + b2 … (2)

Subtracting equation (2) from (1), we obtain

(a − bx − (a + bx = (a2 − 2ab − b2) − (a2 + b2)

(a − b − a − bx = − 2ab − 2b2

− 2bx = − 2b (a + b)

x = a + b

Using equation (1), we obtain

(a − b) (a + b) + (a + by = a2 − 2ab − b2

a2 − b2 + (a + ba2− 2ab − b2

(a + by = − 2ab

(v) 152x − 378y = − 74

76x − 189y = − 37

 … (1)

− 378+ 152y = − 604

− 189x + 76y = − 302 … (2)

Substituting the value of in equation (2), we obtain

− (189)2 y + 189 × 37 + (76)2 y = − 302 × 76

189 × 37 + 302 × 76 = (189)2 y − (76)2 y

6993 + 22952 = (189 − 76) (189 + 76) y

29945 = (113) (265) y

= 1

From equation (1), we obtain

.