CBSE Notes, Lectures

CBSE - Mathematics - Triangles

Triangles

NCERT Exercise Exercise 6.2

Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side.

Given: ΔABC in which D is the mid point of AB such that AD=DB.

A line parallel to BC intersects AC at E as shown in above figure such that DE || BC.

To Prove: E is the mid point of AC.

Proof: D is the mid-point of AB.

∴ AD=DB

⇒ AD/BD = 1 ... (i)

In ΔABC, DE || BC,

Therefore, AD/DB = AE/EC [By using Basic Proportionality Theorem]

⇒1 = AE/EC [From equation (i)]
∴ AE =EC
Hence, E is the mid point of AC.

.