CBSE Notes, Lectures

CBSE - Mathematics - Triangles

Triangles

NCERT Exercise Exercise 6.5

 Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

ABCD is a rhombus whose diagonals AC and BD intersect at O. [Given]

We have to prove that, 

AB+ BC+ CD2 + AD= AC+ BD2

Since, the diagonals of a rhombus bisect each other at right angles.

Therefore, AO = CO and BO = DO

In ΔAOB,

∠AOB = 90°

AB2 = AO+ BO... (i) [By Pythagoras]

Similarly, 

AD2 = AO+ DO... (ii)

DC2 = DO+ CO... (iii)

BC2 = CO+ BO... (iv)

Adding equations (i) + (ii) + (iii) + (iv)  we get,

AB+ AD+ DC+ BC2  =  2(AO+ BO+ DO+ CO)

                                           = 4AO+ 4BO[Since, AO = CO and BO =DO]
                                           = (2AO)2 + (2BO)2 = AC+ BD2

.