Arithematic Progressions CBSE Notes, Lectures

CBSE - Arithematic Progressions

  • By: Admin
  • It can be observed that
    Taxi fare for 1st km = 15
    Taxi fare for first 2 km = 15 + 8 = 23
    Taxi fare for first 3 km = 23 + 8 = 31
    Taxi fare for first 4 km = 31 + 8 = 39

    Clearly 15, 23, 31, 39 … forms an A.P. because every term is 8 more than the preceding term.

  • By: Admin
  • Let the initial volume of air in a cylinder be V litres. In each stroke, the vacuum pump removes 1/4 of air remaining in the cylinder at a time. In other words, after every stroke, only 1 - 1/4 = 3/4th part of air will remain.
    Therefore, volumes will be V, 3V/4 , (3V/4)2 , (3V/4)3...
    Clearly, it can be observed that the adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.

  • By: Admin
  • Cost of digging for first metre = 150
    Cost of digging for first 2 metres = 150 + 50 = 200
    Cost of digging for first 3 metres = 200 + 50 = 250
    Cost of digging for first 4 metres = 250 + 50 = 300
    Clearly, 150, 200, 250, 300 … forms an A.P. because every term is 50 more than the preceding term.

  • By: Admin
  • We know that if Rs P is deposited at % compound interest per annum for n years, our money will be

    Clearly, adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.

  • By: Admin
  • (i) a = 10, d = 10
    Let the series be a1a2a3a4a5 …
    a1 = a = 10
    a2 = a1 + d = 10 + 10 = 20
    a3 = a2 + d = 20 + 10 = 30
    a4 = a3 + d = 30 + 10 = 40
    a5 = a4 + d = 40 + 10 = 50
    Therefore, the series will be 10, 20, 30, 40, 50 …
    First four terms of this A.P. will be 10, 20, 30, and 40.

    (ii) a = - 2, d = 0
    Let the series be a1, a2a3a4 …
    a1 = a = -2
    a2 = a1 + d = - 2 + 0 = - 2
    a3 = a2 + d = - 2 + 0 = - 2
    a4 = a3 + d = - 2 + 0 = - 2
    Therefore, the series will be - 2, - 2, - 2, - 2 …
    First four terms of this A.P. will be - 2, - 2, - 2 and - 2.

    (iii) a = 4, d = - 3
    Let the series be a1a2a3a4 …
    a1 = a = 4
    a2 = a1 + d = 4 - 3 = 1
    a3 = a2 + d = 1 - 3 = - 2
    a4 = a3 + d = - 2 - 3 = - 5
    Therefore, the series will be 4, 1, - 2 - 5 …
    First four terms of this A.P. will be 4, 1, - 2 and - 5.

    (iv) a = - 1, d = 1/2
    Let the series be a1a2a3a4 …a1 = a = -1
    a2 = a1 + d = -1 + 1/2 = -1/2
    a3 = a2 + d = -1/2 + 1/2 = 0
    a4 = a3 + d = 0 + 1/2 = 1/2
    Clearly, the series will be-1, -1/2, 0, 1/2
    First four terms of this A.P. will be -1, -1/2, 0 and 1/2.

    (v) a = - 1.25, d = - 0.25
    Let the series be a1a2a3a4 …
    a1 = a = - 1.25
    a2 = a1 + d = - 1.25 - 0.25 = - 1.50
    a3 = a2 + d = - 1.50 - 0.25 = - 1.75
    a4 = a3 + d = - 1.75 - 0.25 = - 2.00
    Clearly, the series will be 1.25, - 1.50, - 1.75, - 2.00 ……..
    First four terms of this A.P. will be - 1.25, - 1.50, - 1.75 and - 2.00.

  • By: Admin
  • (i) 3, 1, - 1, - 3 …
    Here, first term, a = 3
    Common difference, d = Second term - First term
    = 1 - 3 = - 2

    (ii) - 5, - 1, 3, 7 …
    Here, first term, a = - 5
    Common difference, d = Second term - First term
    = ( - 1) - ( - 5) = - 1 + 5 = 4
    (iii) 1/3, 5/3, 9/3, 13/3 ....
    Here, first term, a = 1/3

    Common difference, d = Second term - First term 

    = 5/3 - 1/3 = 4/3


    (iv) 0.6, 1.7, 2.8, 3.9 …
    Here, first term, a = 0.6
    Common difference, d = Second term - First term
    = 1.7 - 0.6
    = 1.1

  • By: Admin
  • (i) 2, 4, 8, 16 …
    Here,
    a2 - a1 = 4 - 2 = 2
    a3 - a2 = 8 - 4 = 4
    a4 - a3 = 16 - 8 = 8
    ⇒ an+1 - an is not the same every time.

    Therefore, the given numbers are forming an A.P.

    (ii) 2, 5/2, 3, 7/2 ....
    Here,

    a2 - a1 = 5/2 - 2 = 1/2
    a3 - a2 = 3 - 5/2 = 1/2
    a4 - a3 = 7/2 - 3 = 1/2
    ⇒ an+1 - an is same every time.
    Therefore, d = 1/2 and the given numbers are in A.P.
    Three more terms are
    a5 = 7/2 + 1/2 = 4
    a6 = 4 + 1/2 = 9/2
    a7 = 9/2 + 1/2 = 5

    (iii) -1.2, - 3.2, -5.2, -7.2 …
    Here,
    a2 - a1 = ( -3.2) - ( -1.2) = -2
    a3 - a2 = ( -5.2) - ( -3.2) = -2
    a4 - a3 = ( -7.2) - ( -5.2) = -2
    ⇒ an+1 - an is same every time.
    Therefore, d = -2 and the given numbers are in A.P.
    Three more terms are
    a5 = - 7.2 - 2 = - 9.2
    a6 = - 9.2 - 2 = - 11.2
    a7 = - 11.2 - 2 = - 13.2

    (iv) -10, - 6, - 2, 2 …
    Here,
    a2 - a1 = (-6) - (-10) = 4
    a3 - a2 = (-2) - (-6) = 4
    a4 - a3 = (2) - (-2) = 4
    ⇒ an+1 - an is same every time.
    Therefore, d = 4 and the given numbers are in A.P.
    Three more terms are
    a5 = 2 + 4 = 6
    a6 = 6 + 4 = 10
    a7 = 10 + 4 = 14

    (v) 3, 3 + √2, 3 + 2√2, 3 + 3√2
    Here,
    a2 - a1 = 3 + √2 - 3 = √2
    a3 - a2 = (3 + 2√2) - (3 + √2) = √2
    a4 - a3 = (3 + 3√2) - (3 + 2√2) = √2
    ⇒ an+1 - an is same every time.
    Therefore, d = √2 and the given numbers are in A.P.
    Three more terms are
    a5 = (3 + √2) + √2 = 3 + 4√2
    a6 = (3 + 4√2) + √2 = 3 + 5√2
    a7 = (3 + 5√2) + √2 = 3 + 6√2

    (vi) 0.2, 0.22, 0.222, 0.2222 ….
    Here,
    a2 - a1 = 0.22 - 0.2 = 0.02
    a3 - a2 = 0.222 - 0.22 = 0.002
    a4 - a3 = 0.2222 - 0.222 = 0.0002
    ⇒ an+1 - an is not the same every time.
    Therefore, the given numbers are forming an A.P.

    (vii) 0, -4, -8, -12 …
    Here,
    a2 - a1 = (-4) - 0 = -4
    a3 - a2 = (-8) - (-4) = -4
    a4 - a3 = (-12) - (-8) = -4
    ⇒ an+1 - an is same every time.
    Therefore, d = -4 and the given numbers are in A.P.
    Three more terms are
    a5 = -12 - 4 = -16
    a6 = -16 - 4 = -20
    a7 = -20 - 4 = -24

    (viii) -1/2, -1/2, -1/2, -1/2 ....
    Here,
    a2 - a1 = (-1/2) - (-1/2) = 0
    a3 - a2 = (-1/2) - (-1/2) = 0
    a4 - a3 = (-1/2) - (-1/2) = 0
    ⇒ an+1 - an is same every time.
    Therefore, d = 0 and the given numbers are in A.P.
    Three more terms are
    a5 = (-1/2) - 0 = -1/2
    a6 = (-1/2) - 0 = -1/2
    a7 = (-1/2) - 0 = -1/2

    (ix) 1, 3, 9, 27 …
    Here,
    a2 - a1 = 3 - 1 = 2
    a3 - a2 = 9 - 3 = 6
    a4 - a3 = 27 - 9 = 18
    ⇒ an+1 - an is not the same every time.
    Therefore, the given numbers are forming an A.P.

    (x) a, 2a, 3a, 4a …
    Here,
    a2 - a1 = 2a - a
    a3 - a2 = 3a - 2a = a
    a4 - a3 = 4a - 3a = a
    ⇒ an+1 - an is same every time.
    Therefore, d = a and the given numbers are in A.P.
    Three more terms are
    a5 = 4a + a = 5a
    a6 = 5a = 6a
    a7 = 6a + a = 7a

    (xi) aa2a3a4 …
    Here,
    a2 - a1 = aa = (a - 1)
    a3 - a2 = a- aa(a - 1)
    a4 - a3 = a4 - aa3(a - 1)
    ⇒ an+1 - an is not the same every time.

    Therefore, the given numbers are forming an A.P.


    (xii) √2, √8, √18, √32 ...
    Here,
    a2 - a1 = √8 - √2  = 2√2 - √2 = √2
    a3 - a2 = √18 - √8 = 3√2 - 2√2 = √2
    a4 - a3 = 4√2 - 3√2 = √2
    ⇒ an+1 - an is same every time.
    Therefore, d = √2 and the given numbers are in A.P.
    Three more terms are
    a5 = √32  + √2 = 4√2 + √2 = 5√2 = √50
    a6 = 5√2 +√2 = 6√2 = √72
    a7 = 6√2 + √2 = 7√2 = √98
    (xiii) √3, √6, √9, √12 ...
    Here,
    a2 - a1 = √6 - √3 = √3 × 2 -√3 = √3(√2 - 1)
    a3 - a2 = √9 - √6 = 3 - √6 = √3(√3 - √2)
    a4 - a3 = √12 - √9 = 2√3 - √3 × 3 = √3(2 - √3)
    ⇒ an+1 - an is not the same every time.

    Therefore, the given numbers are forming an A.P.

    (xiv) 12, 32, 52, 72 …

    Or, 1, 9, 25, 49 …..
    Here,
    a2 − a1 = 9 − 1 = 8
    a3 − a= 25 − 9 = 16
    a4 − a3 = 49 − 25 = 24
    ⇒ an+1 - an is not the same every time.

    Therefore, the given numbers are forming an A.P.


    (xv) 12, 52, 72, 73 …
    Or 1, 25, 49, 73 …
    Here,
    a2 − a1 = 25 − 1 = 24
    a3 − a= 49 − 25 = 24
    a4 − a3 = 73 − 49 = 24
    i.e., ak+1 − ak is same every time.
    ⇒ an+1 - an is same every time.
    Therefore, d = 24 and the given numbers are in A.P.
    Three more terms are
    a5 = 73+ 24 = 97
    a6 = 97 + 24 = 121
    a= 121 + 24 = 145

  • By: Admin
  • (i) a = 7, d = 3, n = 8, an = ?
    We know that,
    For an A.P. an = a + (n − 1) d
    = 7 + (8 − 1) 3
    = 7 + (7) 3
    = 7 + 21 = 28
    Hence, an = 28

    (ii) Given that
    a = −18, n = 10, an = 0, d = ?
    We know that,
    an = a + (n − 1) d
    0 = − 18 + (10 − 1) d
    18 = 9d
    d = 18/9 = 2
    Hence, common difference, = 2

    (iii) Given that
    = −3, n = 18, an = −5
    We know that,
    an = a + (n − 1) d
    −5 = a + (18 − 1) (−3)
    −5 = a + (17) (−3)
    −5 = − 51
    a = 51 − 5 = 46
    Hence, a = 46

    (iv) a = −18.9, d = 2.5, an = 3.6, n = ?
    We know that,
    an = a + (n − 1) d
    3.6 = − 18.9 + (n − 1) 2.5
    3.6 + 18.9 = (n − 1) 2.5
    22.5 = (n − 1) 2.5
    (n - 1) = 22.5/2.5
    n - 1 = 9
    n = 10
    Hence, n = 10

    (v) a = 3.5, d = 0, n = 105, an = ?
    We know that,
    an = a + (n − 1) d
    an = 3.5 + (105 − 1) 0
    an = 3.5 + 104 × 0
    an = 3.5
    Hence, an = 3.5

  • By: Admin
  • (i) Given that
    A.P. 10, 7, 4, …
    First term, a = 10
    Common difference, d = a2 − a= 7 − 10 = −3
    We know that, an = a + (n − 1) d
    a30 = 10 + (30 − 1) (−3)
    a30 = 10 + (29) (−3)
    a30 = 10 − 87 = −77
    Hence, the correct answer is option C.

    (ii) Given that A.P. is -3, -1/2, ,2 ...
    First term a = - 3
    Common difference, d = a2 − a1 = (-1/2) - (-3)
    = (-1/2) + 3 = 5/2
    We know that, an = a + (n − 1) d
    a11 = 3 + (11 -1)(5/2)
    a11 = 3 + (10)(5/2)
    a11 = -3 + 25
    a11 = 22
    Hence, the answer is option B.

  • By: Admin
  • (i) For this A.P.,

    a = 2
    a3 = 26
    We know that, an = a + (n − 1) d
    a3 = 2 + (3 - 1) d
    26 = 2 + 2d
    24 = 2d
    d = 12
    a2 = 2 + (2 - 1) 12
    = 14
    Therefore, 14 is the missing term.

    (ii) For this A.P.,
    a2 = 13 and
    a4 = 3
    We know that, an = a + (n − 1) d
    a2 = a + (2 - 1) d
    13 = a + d ... (i)
    a4 = a + (4 - 1) d
    3 = a + 3d ... (ii)
    On subtracting (i) from (ii), we get
    - 10 = 2d
    d = - 5
    From equation (i), we get
    13 = a + (-5)
    a = 18
    a3 = 18 + (3 - 1) (-5)
    = 18 + 2 (-5) = 18 - 10 = 8
    Therefore, the missing terms are 18 and 8 respectively.

    (iii) For this A.P.,
    = 5 and
    a4 = 19/2
    We know that, an = a + (n − 1) d
    a4 = a + (4 - 1) d
    19/2 = 5 + 3d
    19/2 - 5 = 3d3d = 9/2
    d = 3/2

    a2 = a + (2 - 1) d
    a2 = + 3/2
    a2 = 13/2

    a3 = a + (3 - 1) d

    a3 = 5 + 2×3/2

    a3 = 8

    Therefore, the missing terms are 13/2 and 8 respectively.

    (iv) For this A.P.,
    a = −4 and
    a6 = 6
    We know that,
    an = a + (n − 1) d
    a6 = a + (6 − 1) d
    6 = − 4 + 5d
    10 = 5d
    d = 2
    a2 = a + d = − 4 + 2 = −2
    a3 = a + 2d = − 4 + 2 (2) = 0
    a4 = a + 3d = − 4 + 3 (2) = 2
    a5 = a + 4d = − 4 + 4 (2) = 4
    Therefore, the missing terms are −2, 0, 2, and 4 respectively.

    (v)
    For this A.P.,
    a2 = 38
    a6 = −22
    We know that
    an = a + (n − 1) d
    a2 = a + (2 − 1) d
    38 = a + d ... (i)
    a6 = a + (6 − 1) d
    −22 = a + 5d ... (ii)
    On subtracting equation (i) from (ii), we get
    − 22 − 38 = 4d
    −60 = 4d 
    d = −15
    a = a2 − d = 38 − (−15) = 53
    a3 = + 2= 53 + 2 (−15) = 23
    a4 = a + 3d = 53 + 3 (−15) = 8
    a5 = a + 4d = 53 + 4 (−15) = −7
    Therefore, the missing terms are 53, 23, 8, and −7 respectively.

  • By: Admin
  • 3, 8, 13, 18, …
    For this A.P.,
    a = 3
    d = a2 − a1 = 8 − 3 = 5
    Let nth term of this A.P. be 78.
    an = a + (n − 1) d
    78 = 3 + (n − 1) 5
    75 = (n − 1) 5
    (n − 1) = 15
    n = 16
    Hence, 16th term of this A.P. is 78.

  • By: Admin
  • (i) For this A.P.,
    a = 7
    d = a2 − a1 = 13 − 7 = 6
    Let there are n terms in this A.P.
    an = 205
    We know that
    an = a + (n − 1) 
    Therefore, 205 = 7 + (− 1) 6
    198 = (n − 1) 6
    33 = (n − 1)
    n = 34
    Therefore, this given series has 34 terms in it.

    (ii) For this A.P.,
    a = 18

    Let there are n terms in this A.P.
    an = 205

    an = a + (n − 1) d

    -47 = 18 + (n - 1) (-5/2)

    -47 - 18 = (n - 1) (-5/2)
    -65 = (n - 1)(-5/2)
    (n - 1) = -130/-5
    (n - 1) = 26
    = 27
    Therefore, this given A.P. has 27 terms in it.

  • By: Admin
  • For this A.P.,
    a = 11
    d = a2 − a1 = 8 − 11 = −3
    Let −150 be the nth term of this A.P.
    We know that,
    an = a + (n − 1) d
    -150 = 11 + (n - 1)(-3)
    -150 = 11 - 3n + 3
    -164 = -3n
    n = 164/3
    Clearly, n is not an integer.
    Therefore, - 150 is not a term of this A.P.

  • By: Admin
  • Given that,
    a11 = 38
    a16 = 73
    We know that,
    an = a + (n − 1) d
    a11 = + (11 − 1) d
    38 = a + 10d ... (i)
    Similarly,
    a16 = a + (16 − 1) d
    73 = a + 15d ... (ii)
    On subtracting (i) from (ii), we get
    35 = 5d
    d = 7
    From equation (i),
    38 = a + 10 × (7)
    38 − 70 = a
    a = −32
    a31 = + (31 − 1) d
    = − 32 + 30 (7)
    = − 32 + 210
    = 178
    Hence, 31st term is 178.

  • By: Admin
  • Given that,
    a3 = 12
    a50 = 106
    We know that,
    an = a + (n − 1) d
    a3 = a + (3 − 1) d
    12 = a + 2d ... (i)
    Similarly, a50 a + (50 − 1) d
    106 = a + 49d ... (ii)
    On subtracting (i) from (ii), we get
    94 = 47d
    d = 2
    From equation (i), we get
    12 = a + 2 (2)
    a = 12 − 4 = 8
    a29 = a + (29 − 1) d
    a29 = 8 + (28)2
    a29 = 8 + 56 = 64
    Therefore, 29th term is 64.

  • By: Admin
  • Given that,

    a3 = 4
    a9 = −8
    We know that,
    an = a + (n − 1) d
    a3 = + (3 − 1) d
    4 = a + 2d ... (i)
    a9 = + (9 − 1) d
    −8 = a + 8d ... (ii)
    On subtracting equation (i) from (ii), we get,
    −12 = 6d
    d = −2
    From equation (i), we get,
    4 = + 2 (−2)
    4 = a − 4
    a = 8
    Let nth term of this A.P. be zero.
    a+ (− 1) d
    0 = 8 + (n − 1) (−2)
    0 = 8 − 2n + 2
    2= 10
    n = 5
    Hence, 5th term of this A.P. is 0.

  • By: Admin
  • We know that,
    For an A.P., an = a + (n − 1) d
    a17 = a + (17 − 1) d
    a17 = a + 16d
    Similarly, a10 = a + 9d
    It is given that
    a17 − a10 = 7
    (a + 16d) − (a + 9d) = 7
    7d = 7
    d = 1
    Therefore, the common difference is 1.

  • By: Admin
  • Given A.P. is 3, 15, 27, 39, …
    = 3
    d = a2 − a1 = 15 − 3 = 12
    a54 = a + (54 − 1) d
    = 3 + (53) (12)
    = 3 + 636 = 639
    132 + 639 = 771
    We have to find the term of this A.P. which is 771.
    Let nth term be 771.
    an = a + (n − 1) d
    771 = 3 + (n − 1) 12
    768 = (n − 1) 12
    (n − 1) = 64
    n = 65
    Therefore, 65th term was 132 more than 54th term.

    Or

    Let nth term be 132 more than 54th term.
    n = 54 + 132/2
    = 54 + 11 = 65th term

  • By: Admin
  • Let the first term of these A.P.s be a1 and a2 respectively and the common difference of these A.P.s be d.
    For first A.P.,
    a100 = a1 + (100 − 1) d
    a1 + 99d
    a1000 = a1 + (1000 − 1) d
    a1000 = a1 + 999d
    For second A.P.,
    a100 = a2 + (100 − 1) d
    a2 + 99d
    a1000 = a2 + (1000 − 1) d
    a2 + 999d
    Given that, difference between
    100th term of these A.P.s = 100
    Therefore, (a1 + 99d) − (a2 + 99d) = 100
    a1 − a2 = 100 ... (i)
    Difference between 1000th terms of these A.P.s
    (a1 + 999d) − (a2 + 999d) = a1 − a2
    From equation (i),
    This difference, a1 − a= 100
    Hence, the difference between 1000th terms of these A.P. will be 100.

  • By: Admin
  • First three-digit number that is divisible by 7 = 105
    Next number = 105 + 7 = 112
    Therefore, 105, 112, 119, …
    All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as 105 and common difference as 7.
    The maximum possible three-digit number is 999. When we divide it by 7, the remainder will be 5. Clearly, 999 − 5 = 994 is the maximum possible three-digit number that is divisible by 7.
    The series is as follows.
    105, 112, 119, …, 994
    Let 994 be the nth term of this A.P.
    a = 105
    d = 7
    an = 994
    n = ?
    an = a + (n − 1) d
    994 = 105 + (n − 1) 7
    889 = (n − 1) 7
    (− 1) = 127
    n = 128
    Therefore, 128 three-digit numbers are divisible by 7.

  • By: Admin
  • First multiple of 4 that is greater than 10 is 12. Next will be 16.
    Therefore, 12, 16, 20, 24, …
    All these are divisible by 4 and thus, all these are terms of an A.P. with first term as 12 and common difference as 4.
    When we divide 250 by 4, the remainder will be 2. Therefore, 250 − 2 = 248 is divisible by 4.
    The series is as follows.
    12, 16, 20, 24, …, 248
    Let 248 be the nth term of this A.P.
    a = 12
    d = 4
    an = 248
    an = a + (n - 1) d
    248 = 12 + (n - 1) × 4
    236/4 = n - 1
    59  = n - 1
    n = 60
    Therefore, there are 60 multiples of 4 between 10 and 250.

    Or

    Multiples of 4 lies between 10 and 250 are 12, 16, 20, ...., 248.
    These numbers form an AP with a = 12 and d = 4.
    Let number of three-digit numbers divisible by 4 be nan = 248
    ⇒ a + (n - 1) d = 248
    ⇒ 12 + (n - 1) × 4 = 248
    ⇒4(n - 1) = 248
    ⇒ n - 1 = 59
    ⇒ n = 60

  • By: Admin
  • 63, 65, 67, …
    a = 63
    d = a2 − a1 = 65 − 63 = 2
    nth term of this A.P. = an = a + (n − 1) d
    an= 63 + (n − 1) 2 = 63 + 2n − 2
    an = 61 + 2n ... (i)
    3, 10, 17, …
    a = 3
    d = a2 − a1 = 10 − 3 = 7
    nth term of this A.P. = 3 + (n − 1) 7
    an = 3 + 7n − 7
    an = 7n − 4 ... (ii)
    It is given that, nth term of these A.P.s are equal to each other.
    Equating both these equations, we obtain
    61 + 2n = 7n − 4
    61 + 4 = 5n
    5n = 65
    n = 13
    Therefore, 13th terms of both these A.P.s are equal to each other. 

  • By: Admin
  • a3 = 16

    a + (3 − 1) d = 16
    a + 2d = 16 ... (i)
    a7 − a5 = 12
    [a+ (7 − 1) d] − [+ (5 − 1) d]= 12
    (a + 6d) − (a + 4d) = 12
    2d = 12
    d = 6
    From equation (i), we get,
    a + 2 (6) = 16
    a + 12 = 16
    a = 4
    Therefore, A.P. will be
    4, 10, 16, 22, …

  • By: Admin
  • Given A.P. is
    3, 8, 13, …, 253
    Common difference for this A.P. is 5.
    Therefore, this A.P. can be written in reverse order as
    253, 248, 243, …, 13, 8, 5
    For this A.P.,
    a = 253
    d = 248 − 253 = −5
    = 20
    a20 = a + (20 − 1) d
    a20 = 253 + (19) (−5)
    a20 = 253 − 95
    a = 158
    Therefore, 20th term from the last term is 158.

  • By: Admin
  • We know that,
    an = a + (− 1) d
    a4 = a + (4 − 1) d
    a4 = a + 3d 
    Similarly,
    a8 = a + 7d
    a6 = a + 5d
    a10 = a + 9d
    Given that, a4 + a8 = 24
    a + 3d + + 7d = 24
    2a + 10d = 24
    a + 5d = 12 ... (i)
    a6 + a10 = 44
    a + 5d + a + 9d = 44
    2a + 14d = 44
    a + 7d = 22 ... (ii)
    On subtracting equation (i) from (ii), we get,
    2d = 22 − 12
    2d = 10
    d = 5
    From equation (i), we get
    a + 5d = 12
    a + 5 (5) = 12
    a + 25 = 12
    a = −13
    a2 = a + d = − 13 + 5 = −8
    a3 = a2 + d = − 8 + 5 = −3
    Therefore, the first three terms of this A.P. are −13, −8, and −3.

  • By: Admin
  • It can be observed that the incomes that Subba Rao obtained in various years are in A.P. as every year, his salary is increased by Rs 200.
    Therefore, the salaries of each year after 1995 are
    5000, 5200, 5400, …
    Here, a = 5000
    d = 200
    Let after nth year, his salary be Rs 7000.
    Therefore, an = a + (n − 1) d
    7000 = 5000 + (n − 1) 200
    200(n − 1) = 2000
    (n − 1) = 10
    n = 11
    Therefore, in 11th year, his salary will be Rs 7000.

  • By: Admin
  • Given that,
    a = 5
    = 1.75
    a= 20.75
    n = ?
    an = a + (n − 1) d
    20.75 = 5 + (n - 1) × 1.75
    15.75 = (n - 1) × 1.75
    (n - 1) = 15.75/1.75 = 1575/175
    = 63/7 = 9
    n - 1 = 9
    n = 10
    Hence, n is 10

  • By: Admin
  • (i) 2, 7, 12 ,…, to 10 terms
    For this A.P.,
    a = 2
    d = a2 − a1 = 7 − 2 = 5
    n = 10
    We know that,
    Sn = n/2 [2a + (n - 1) d]
    S10 = 10/2 [2(2) + (10 - 1) × 5]
    = 5[4 + (9) × (5)]
    = 5 × 49 = 245

    (ii) −37, −33, −29 ,…, to 12 terms
    For this A.P.,
    a = −37
    d = a2 − a1 = (−33) − (−37)
    = − 33 + 37 = 4
    n = 12
    We know that,
    Sn = n/2 [2a + (n - 1) d]
    S12 = 12/2 [2(-37) + (12 - 1) × 4]
    = 6[-74 + 11 × 4]
    = 6[-74 + 44]
    = 6(-30) = -180

    (iii) 0.6, 1.7, 2.8 ,…, to 100 terms
    For this A.P.,
    a = 0.6
    d = a2 − a1 = 1.7 − 0.6 = 1.1
    n = 100
    We know that,
    Sn = n/2 [2a + (n - 1) d]
    S12 = 50/2 [1.2 + (99) × 1.1]
    = 50[1.2 + 108.9]
    = 50[110.1]
    = 5505


    (iv) 1/15, 1/12, 1/10, ...... , to 11 terms
    For this A.P.,

  • By: Admin
  • For this A.P.,
    a = 7
    l = 84
    d = a2 − a1 =- 7 = 21/2 - 7 = 7/2
    Let 84 be the nth term of this A.P.
    l = a (n - 1)d
    84 = 7 + (n - 1) × 7/2
    77 = (n - 1) × 7/2
    22 = n − 1
    n = 23
    We know that,
    Sn = n/2 (a + l)
    Sn = 23/2 (7 + 84)
    = (23×91/2) = 2093/2


    (ii) 34 + 32 + 30 + ……….. + 10
    For this A.P.,
    a = 34
    d = a2 − a1 = 32 − 34 = −2
    l = 10
    Let 10 be the nth term of this A.P.
    l = a + (− 1) d
    10 = 34 + (n − 1) (−2)
    −24 = (− 1) (−2)
    12 = n − 1
    n = 13
    Sn = n/2 (a + l)
    = 13/2 (34 + 10)
    = (13×44/2) = 13 × 22
    = 286

    (iii) (−5) + (−8) + (−11) + ………… + (−230) For this A.P.,
    = −5
    l = −230
    d = a2 − a1 = (−8) − (−5)
    = − 8 + 5 = −3
    Let −230 be the nth term of this A.P.
    l = a + (− 1)d
    −230 = − 5 + (n − 1) (−3)
    −225 = (n − 1) (−3)
    (n − 1) = 75
    n = 76
    And,
    Sn = n/2 (a + l)
    = 76/2 [(-5) + (-230)]
    = 38(-235)
    = -8930

  • By: Admin
  • (i) Given that, a = 5, d = 3, an = 50
    As an = a + (n − 1)d,
    ⇒ 50 = 5 + (n - 1) × 3
    ⇒ 3(n - 1) = 45
    ⇒ n - 1 = 15
    ⇒ n = 16
    Now, Sn = n/2 (a + an)
    Sn = 16/2 (5 + 50) = 440


    (ii) Given that, a = 7, a13 = 35
    As an = a + (n − 1)d, ⇒ 35 = 7 + (13 - 1)d
    ⇒ 12d = 28
    ⇒ d = 28/12 = 2.33
    Now, Sn = n/2 (a + an)
    S13 = 13/2 (7 + 35) = 273

    (iii)Given that, a12 = 37, d = 3 As an = a + (n − 1)d,
    ⇒ a12 = a + (12 − 1)3
    ⇒ 37 = a + 33
    ⇒ a = 4
    Sn = n/2 (a + an)
    Sn = 12/2 (4 + 37)
    = 246

    (iv) Given that, a3 = 15, S10 = 125
    As an = a + (n − 1)d,
    a3 = a + (3 − 1)d
    15 = a + 2d ... (i)
    Sn = n/2 [2a + (n - 1)d]
    S10 = 10/2 [2a + (10 - 1)d]
    125 = 5(2a + 9d)
    25 = 2a + 9... (ii)
    On multiplying equation (i) by (ii), we get
    30 = 2a + 4d ... (iii)
    On subtracting equation (iii) from (ii), we get
    −5 = 5d
    d = −1
    From equation (i),
    15 = a + 2(−1)
    15 = a − 2
    a = 17
    a10 = a + (10 − 1)d
    a10 = 17 + (9) (−1)
    a10 = 17 − 9 = 8

    (v) Given that, d = 5, S9 = 75
    As Sn = n/2 [2a + (n - 1)d]
    S9 = 9/2 [2a + (9 - 1)5]
    25 = 3(a + 20)
    25 = 3a + 60
    3a = 25 − 60
    a = -35/3
    an = a + (n − 1)d
    a9 = a + (9 − 1) (5)
    = -35/3 + 8(5)
    = -35/3 + 40
    = (35+120/3) = 85/3

    (vi) Given that, a = 2, d = 8, Sn = 90
    As Sn = n/2 [2a + (n - 1)d]
    90 = n/2 [2a + (n - 1)d]
    ⇒ 180 = n(4 + 8n - 8) = n(8n - 4) = 8n2 - 4n
    ⇒ 8n2 - 4n - 180 = 0
    ⇒ 2n2 - n - 45 = 0
    ⇒ 2n2 - 10n + 9n - 45 = 0
    ⇒ 2n(n -5) + 9(n - 5) = 0
    ⇒ (2n - 9)(2n + 9) = 0
    So, n = 5 (as it is positive integer)
    ∴ a5 = 8 + 5 × 4 = 34

    (vii) Given that, a = 8, an = 62, Sn = 210
    As Sn = n/2 (a + an)
    210 = n/2 (8 + 62)
    ⇒ 35n = 210
    ⇒ n = 210/35 = 6
    Now, 62 = 8 + 5d
    ⇒ 5d = 62 - 8 = 54
    ⇒ d = 54/5 = 10.8

    (viii) Given that, an = 4, d = 2, Sn = −14
    an = a + (n − 1)d
    4 = a + (− 1)2
    4 = a + 2n − 2
    a + 2n = 6
    = 6 − 2n ... (i)
    Sn = n/2 (a + an)
    -14 = n/2 (a + 4)
    −28 = (a + 4)
    −28 = (6 − 2n + 4) {From equation (i)}
    −28 = (− 2n + 10)
    −28 = − 2n2 + 10n
    2n2 − 10n − 28 = 0
    n2 − 5−14 = 0
    n2 − 7n + 2n − 14 = 0
    (n − 7) + 2(n − 7) = 0
    (n − 7) (n + 2) = 0
    Either n − 7 = 0 or n + 2 = 0
    n = 7 or n = −2
    However, n can neither be negative nor fractional.
    Therefore, n = 7
    From equation (i), we get
    a = 6 − 2n
    a = 6 − 2(7)
    = 6 − 14
    = −8

    (ix) Given that, a = 3, n = 8, S = 192
    As Sn = n/2 [2a + (n - 1)d]
    192 = 8/2 [2 × 3 + (8 - 1)d]
    192 = 4 [6 + 7d]
    48 = 6 + 7d
    42 = 7d
    d = 6

    (x) Given that, l = 28, S = 144 and there are total of 9 terms.
    Sn = n/2 (a + l)
    144 = 9/2 (a + 28)
    (16) × (2) = a + 28
    32 = a + 28
    a = 4

  • By: Admin
  • Let there be n terms of this A.P.
    For this A.P., a = 9
    d = a2 − a1 = 17 − 9 = 8
    As Sn = n/2 [2a + (n - 1)d]
    636 = n/2 [2 × a + (8 - 1) × 8]
    636 = n/2 [18 + (n- 1) × 8]
    636 = [9 + 4n − 4]
    636 = (4n + 5)
    4n2 + 5n − 636 = 0
    4n2 + 53n − 48n − 636 = 0
    (4n + 53) − 12 (4n + 53) = 0
    (4n + 53) (n − 12) = 0
    Either 4+ 53 = 0 or n − 12 = 0
    n = (-53/4) or n = 12
    cannot be (-53/4). As the number of terms can neither be negative nor fractional, therefore, n = 12 only.

  • By: Admin
  • Given that,
    a = 5
    l = 45
    Sn = 400
    Sn = n/2 (a + l)
    400 = n/2 (5 + 45)
    400 = n/2 (50)
    n = 16
    l = a + (n − 1) d
    45 = 5 + (16 − 1) d
    40 = 15d
    d = 40/15 = 8/3

  • By: Admin
  • Given that,

    a = 17
    l = 350
    d = 9
    Let there be n terms in the A.P.
    l = a + (n − 1) d
    350 = 17 + (n − 1)9
    333 = (n − 1)9
    (n − 1) = 37
    n = 38
    Sn = n/2 (a + l)
    S38 = 13/2 (17 + 350)
    = 19 × 367
    = 6973
    Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.

  • By: Admin
  • d = 7
    a22 = 149
    S22 = ?
    an = a + (n − 1)d
    a22 = a + (22 − 1)d
    149 = a + 21 × 7
    149 = a + 147
    a = 2
    Sn = n/2 (a + an)
    = 22/2 (2 + 149)
    = 11 × 151
    = 1661

  • By: Admin
  • Given that,
    a2 = 14
    a3 = 18
    d = a3 − a2 = 18 − 14 = 4
    a2 = a + d
    14 = a + 4
    a = 10
    Sn = n/2 [2a + (n - 1)d]
    S51 = 51/2 [2 × 10 + (51 - 1) × 4]
    = 51/2 [2 + (20) × 4]
    = 51×220/2
    = 51 × 110
    = 5610

  • By: Admin
  • Given that,

    S7 = 49
    S17 = 289
    S7  = 7/2 [2a + (n - 1)d]
    S7 = 7/2 [2a + (7 - 1)d]
    49 = 7/2 [2a + 16d]
    7 = (a + 3d)
    a + 3d = 7 ... (i)
    Similarly,
    S17 = 17/2 [2a + (17 - 1)d]
    289 = 17/2 (2a + 16d)
    17 = (a + 8d)
    a + 8d = 17 ... (ii)
    Subtracting equation (i) from equation (ii),
    5d = 10
    d = 2
    From equation (i),
    a + 3(2) = 7
    a + 6 = 7
    a = 1
    Sn = n/2 [2a + (n - 1)d]
    n/2 [2(1) + (n - 1) × 2]
    n/2 (2 + 2n - 2)
    n/2 (2n)
    n2

  • By: Admin
  • (i) an = 3 + 4n
    a1 = 3 + 4(1) = 7
    a2 = 3 + 4(2) = 3 + 8 = 11
    a3 = 3 + 4(3) = 3 + 12 = 15
    a4 = 3 + 4(4) = 3 + 16 = 19
    It can be observed that
    a2 − a1 = 11 − 7 = 4
    a3 − a2 = 15 − 11 = 4
    a4 − a3 = 19 − 15 = 4
    i.e., ak + 1 − ak is same every time. Therefore, this is an AP with common difference as 4 and first term as 7.
    Sn = n/2 [2a + (n - 1)d]
    S15 = 15/2 [2(7) + (15 - 1) × 4]
    = 15/2 [(14) + 56]
    = 15/2 (70)
    = 15 × 35
    = 525

    (ii) an = 9 − 5n
    a1 = 9 − 5 × 1 = 9 − 5 = 4
    a2 = 9 − 5 × 2 = 9 − 10 = −1
    a3 = 9 − 5 × 3 = 9 − 15 = −6
    a4 = 9 − 5 × 4 = 9 − 20 = −11
    It can be observed that
    a2 − a1 = − 1 − 4 = −5
    a3 − a2 = − 6 − (−1) = −5
    a4 − a3 = − 11 − (−6) = −5
    i.e., ak + 1 − ak is same every time. Therefore, this is an A.P. with common difference as −5 and first term as 4.
    Sn = n/2 [2a + (n - 1)d]
    S15 = 15/2 [2(4) + (15 - 1) (-5)]
    = 15/2 [8 + 14(-5)]
    = 15/2 (8 - 70)
    = 15/2 (-62)
    = 15(-31)
    = -465

  • By: Admin
  • Given that,
    Sn = 4n − n2
    First term, a = S1 = 4(1) − (1)2 = 4 − 1 = 3
    Sum of first two terms = S2
    = 4(2) − (2)2 = 8 − 4 = 4
    Second term, a2 = S2 − S1 = 4 − 3 = 1
    d = a2 − a = 1 − 3 = −2
    an = a + (n − 1)
    = 3 + (n − 1) (−2)
    = 3 − 2n + 2
    = 5 − 2n
    Therefore, a3 = 5 − 2(3) = 5 − 6 = −1
    a10 = 5 − 2(10) = 5 − 20 = −15
    Hence, the sum of first two terms is 4. The second term is 1. 3rd, 10th, and nth terms are −1, −15, and 5 − 2n respectively.

  • By: Admin
  • The positive integers that are divisible by 6 are
    6, 12, 18, 24 …
    It can be observed that these are making an A.P. whose first term is 6 and common difference is 6.
    a = 6
    d = 6
    S40 = ?
    Sn = n/2 [2a + (n - 1)d]
    S40 = 40/2 [2(6) + (40 - 1) 6]
    = 20[12 + (39) (6)]
    = 20(12 + 234)
    = 20 × 246
    = 4920

  • By: Admin
  • The multiples of 8 are
    8, 16, 24, 32…
    These are in an A.P., having first term as 8 and common difference as 8.
    Therefore, a = 8
    d = 8
    S15 = ?
    Sn = n/2 [2a + (n - 1)d]
    S15 = 15/2 [2(8) + (15 - 1)8]
    = 15/2[6 + (14) (8)]
    = 15/2[16 + 112]
    = 15(128)/2
    = 15 × 64
    = 960

  • By: Admin
  • The odd numbers between 0 and 50 are
    1, 3, 5, 7, 9 … 49
    Therefore, it can be observed that these odd numbers are in an A.P.
    a = 1
    d = 2
    l = 49
    l = a + (n − 1) d
    49 = 1 + (n − 1)2
    48 = 2(n − 1)
    n − 1 = 24
    n = 25
    Sn = n/2 (a + l)
    S25 = 25/2 (1 + 49)
    = 25(50)/2
    =(25)(25)
    = 625

  • By: Admin
  • It can be observed that these penalties are in an A.P. having first term as 200 and common difference as 50.
    a = 200
    d = 50
    Penalty that has to be paid if he has delayed the work by 30 days = S30
    = 30/2 [2(200) + (30 - 1) 50]

    = 15 [400 + 1450]
    = 15 (1850)
    = 27750
    Therefore, the contractor has to pay Rs 27750 as penalty.

  • By: Admin
  • It can be observed that these penalties are in an A.P. having first term as 200 and common difference as 50.
    a = 200
    d = 50
    Penalty that has to be paid if he has delayed the work by 30 days = S30
    = 30/2 [2(200) + (30 - 1) 50]

    = 15 [400 + 1450]
    = 15 (1850)
    = 27750
    Therefore, the contractor has to pay Rs 27750 as penalty.

  • By: Admin
  • Let the cost of 1st prize be P.
    Cost of 2nd prize = P − 20
    And cost of 3rd prize = P − 40
    It can be observed that the cost of these prizes are in an A.P. having common difference as −20 and first term as P.
    a = P
    d = −20
    Given that, S7 = 700
    7/2 [2a + (7 - 1)d] = 700

    a + 3(−20) = 100
    a − 60 = 100
    a = 160
    Therefore, the value of each of the prizes was Rs 160, Rs 140, Rs 120, Rs 100, Rs 80, Rs 60, and Rs 40.

  • By: Admin
  • It can be observed that the number of trees planted by the students is in an AP.
    1, 2, 3, 4, 5………………..12
    First term, a = 1
    Common difference, d = 2 − 1 = 1
    Sn = n/2 [2a + (n - 1)d]
    S12 = 12/2 [2(1) + (12 - 1)(1)]
    = 6 (2 + 11)
    = 6 (13)
    = 78
    Therefore, number of trees planted by 1 section of the classes = 78
    Number of trees planted by 3 sections of the classes = 3 × 78 = 234
    Therefore, 234 trees will be planted by the students.

  • By: Admin
  • perimeter of semi-circle = πr
    P1 = π(0.5) = π/2 cm
    P2 = π(1) = π cm
    P3 = π(1.5) = 3π/2 cm
    P1P2P3 are the lengths of the semi-circles

    π/2, π, 3π/2, 2π, ....
    P1 = π/2 cm
    P2 = π cm
    d = P2- P1 = π - π/2 = π/2
    First term = P1 = a = π/2 cm
    Sn = n/2 [2a + (n - 1)d]
    Therefor, Sum of the length of 13 consecutive circles
    S13 = 13/2 [2(π/2) + (13 - 1)π/2]
    =  13/2 [π + 6π]
    =13/2 (7π)  = 13/2 × 7 × 22/7
    = 143 cm

  • By: Admin
  • It can be observed that the numbers of logs in rows are in an A.P.
    20, 19, 18…
    For this A.P.,
    a = 20
    d = a2 − a1 = 19 − 20 = −1
    Let a total of 200 logs be placed in n rows.
    Sn = 200
    Sn = n/2 [2a + (n - 1)d]
    S12 = 12/2 [2(20) + (n - 1)(-1)]
    400 = n (40 − n + 1)
    400 = (41 − n)
    400 = 41n − n2
    n2 − 41+ 400 = 0
    n2 − 16n − 25n + 400 = 0
    (n − 16) −25 (n − 16) = 0
    (− 16) (n − 25) = 0
    Either (n − 16) = 0 or n − 25 = 0
    n = 16 or n = 25
    an = a + (n − 1)d
    a16 = 20 + (16 − 1) (−1)
    a16 = 20 − 15
    a16 = 5
    Similarly,
    a25 = 20 + (25 − 1) (−1)
    a25 = 20 − 24
    = −4
    Clearly, the number of logs in 16th row is 5. However, the number of logs in 25th row is negative, which is not possible.
    Therefore, 200 logs can be placed in 16 rows and the number of logs in the 16th row is 5.

  • By: Admin
  • The distances of potatoes from the bucket are 5, 8, 11, 14…
    Distance run by the competitor for collecting these potatoes are two times of the distance at which the potatoes have been kept. Therefore, distances to be run are
    10, 16, 22, 28, 34,……….
    a = 10
    d = 16 − 10 = 6
    S10 =?
    S10 = 12/2 [2(20) + (n - 1)(-1)]
    = 5[20 + 54]
    = 5 (74)
    = 370
    Therefore, the competitor will run a total distance of 370 m.

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.