Herons Formula CBSE Notes, Lectures

CBSE - Herons Formula

  • By: Admin
  • Solution

    Length of the side of equilateral triangle = a
    Perimeter of the signal board = 3a = 180 cm
    ∴ 3a = 180 cm ⇒ a = 60 cm
    Semi perimeter of the signal board (s) = 3a/2
    Using heron's formula,
    Area of the signal board = √s (s-a) (s-b) (s-c)
                                           = √(3a/2) (3a/2 - a) (3a/2 - a) (3a/2 - a)
                                           = √3a/2 × a/2 × a/2 × a/2
                                           = √3a4/16
                                           = √3a2/4
                                           = √3/4 × 60 × 60 = 900√3 cm2

  • By: Admin
  • Solution

    The sides of the triangle are 122 m, 22 m and 120 m.
    Perimeter of the triangle is 122 + 22 + 120 = 264m
    Semi perimeter of triangle (s) = 264/2 = 132 m
    Using heron's formula,
    Area of the advertisement = √s (s-a) (s-b) (s-c)
                                           = √132(132 - 122) (132 - 22) (132 - 120) m2
                                           = √132 × 10 × 110 × 12 m2
                                           = 1320 m2
    Rent of advertising per year = ₹ 5000 per m2
    Rent of one wall for 3 months = ₹ (1320 × 5000 × 3)/12 = ₹ 1650000

  • By: Admin
  • Solution
    Sides of the triangular wall are 15 m, 11 m and 6 m.
    Semi perimeter of triangular wall (s) = (15 + 11 + 6)/2 m = 16 m
    Using heron's formula, 
    Area of the message = √s (s-a) (s-b) (s-c)
                                           = √16(16 - 15) (16 - 11) (16 - 6) m2
                                           = √16 × 1 × 5 × 10 m= √800 m2
                                           = 20√2 m2

  • By: Admin
  • Solution

    Two sides of the triangle = 18cm and 10cm
    Perimeter of the triangle = 42cm
    Third side of triangle = 42 - (18+10) cm = 14cm
    Semi perimeter of triangle = 42/2 = 21cm
    Using heron's formula,
    Area of the triangle = √s (s-a) (s-b) (s-c)
                                           = √21(21 - 18) (21 - 10) (21 - 14) cm2
                                           = √21 × 3 × 11 × 7 m2
                                           = 21√11 cm2

  • By: Admin
  • Solution

    Ratio of the sides of the triangle = 12 : 17 : 25
    Let the common ratio be x then sides are 12x, 17x and 25x
    Perimeter of the triangle = 540cm
    12x + 17x + 25x = 540 cm
    ⇒ 54x = 540cm
    ⇒ x = 10
    Sides of triangle are,
    12x = 12 × 10 = 120cm
    17x = 17 × 10 = 170cm
    25x = 25 × 10 = 250cm
    Semi perimeter of triangle(s) = 540/2 = 270cm
    Using heron's formula,
    Area of the triangle = √s (s-a) (s-b) (s-c)
                                           = √270(270 - 120) (270 - 170) (270 - 250)cm2
                                           = √270 × 150 × 100 × 20 cm2
                                           = 9000 cm2

  • By: Admin
  • Solution

     

    Length of the equal sides = 12cm
    Perimeter of the triangle = 30cm
    Length of the third side = 30 - (12+12) cm = 6cm
    Semi perimeter of the triangle(s) = 30/2 cm = 15cm
    Using heron's formula,
    Area of the triangle = √s (s-a) (s-b) (s-c)
                                           = √15(15 - 12) (15 - 12) (15 - 6)cm2
                                           = √15 × 3 × 3 × 9 cm2
                                           = 9√15 cm2

  • By: Admin
  • Solution

     

    ∠C = 90º, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m
    BD is joined. 

    In ΔBCD,
    By applying Pythagoras theorem,
    BD2 = BC+ CD2  
    ⇒ BD2 = 12+ 52 
    ⇒ BD2 = 169
    ⇒ BD = 13 m
    Area of ΔBCD = 1/2 × 12 × 5 = 30 m2
    Now,
    Semi perimeter of ΔABD(s) = (8 + 9 + 13)/2 m = 30/2 m = 15 m
    Using heron's formula,
    Area of ΔABD  = √s (s-a) (s-b) (s-c)
                                           = √15(15 - 13) (15 - 9) (15 - 8) m2
                                           = √15 × 2 × 6 × 7 m2
                                           = 6√35 m= 35.5 m2 (approx)

    Area of quadrilateral ABCD = Area of ΔBCD + Area of ΔABD = 30 m2 + 35.5m2 = 65.5m2 

  • By: Admin
  • Solution:

    Length of the sides of the triangle section I = 5cm, 1cm and 5cm
    Perimeter of the triangle = 5 + 5 + 1 = 11cm
    Semi perimeter = 11/2 cm = 5.5cm
    Using heron's formula,
    Area of section I  = √s (s-a) (s-b) (s-c)
                                           = √5.5(5.5 - 5) (5.5 - 5) (5.5 - 1) cm2
                                           = √5.5 × 0.5 × 0.5 × 4.5 cm2
                                           = 0.75√11 cm= 0.75 × 3.317cm2 = 2.488cm2 (approx)
    Length of the sides of the rectangle of section I = 6.5cm and 1cm
    Area of section II = 6.5 × 1 cm2 =  6.5 cm2
    Section III is an isosceles trapezium which is divided into 3 equilateral of side 1cm each.
    Area of the trapezium = 3 × √3/4 × 1cm= 1.3 cm(approx)
    Section IV and V are 2 congruent right angled triangles with base 6cm and height 1.5cm
    Area of region IV and V = 2 × 1/2 × 6 × 1.5cm= 9cm2
    Total area of the paper used = (2.488 + 6.5 + 1.3 + 9)cm= 19.3 cm2

  • By: Admin
  • Solution

    Given,
    Area of the parallelogram and triangle are equal. 

    Length of the sides of the triangle are 26 cm, 28 cm and 30 cm.
    Perimeter of the triangle = 26 + 28 + 30 = 84 cm
    Semi perimeter of the triangle = 84/2 cm = 42 cm
    Using heron's formula,
    Area of the triangle = √s (s-a) (s-b) (s-c)
                                           = √42(42 - 26) (46 - 28) (46 - 30) cm2
                                           = √46 × 16 × 14 × 16 cm2
                                           = 336 cm2Let height of parallelogram be h.
    Area of parallelogram = Area of triangle 
    28cm × h = 336 cm2
     h = 336/28 cm
     h = 12 cm
    The height of the parallelogram is 12 cm.

  • By: Admin
  • Solution

    Diagonal AC divides the rhombus ABCD into two congruent triangles of equal area. 

    Semi perimeter of ΔABC = (30 + 30 + 48)/2 m = 54 m
    Using heron's formula,
    Area of the ΔABC = √s (s-a) (s-b) (s-c)
                                           = √54(54 - 30) (54 - 30) (54 - 48) m2
                                           = √54 × 24 × 24 × 6 cm2
                                           = 432 m2
    Area of field = 2 × area of the ΔABC = (2 × 432)m= 864 m2
    Thus,
    Area of grass field which each cow will be getting = 864/18 m= 48 m2

  • By: Admin
  • Solution

    Semi perimeter of each triangular piece = (50 + 50 + 20)/2 cm = 120/2 cm = 60cm
    Using heron's formula,
    Area of the triangular piece = √s (s-a) (s-b) (s-c)
                                           = √60(60 - 50) (60 - 50) (60 - 20) cm2
                                           = √60 × 10 × 10 × 40 cm2
                                           = 200√6 cm2
    Area of triangular piece = 5 × 200√6 cm= 1000√6 cm2

  • By: Admin
  • Solution

    We know that,
    As the diagonals of a square bisect each other at right angle.
    Area of given kite = 1/2 (diagonal)2
                                  = 1/2 × 32 × 32 = 512 cm2
    Area of shade I = Area of shade II
    ⇒ 512/2 cm= 256 cm2
    So, area of paper required in each shade = 256 cm2
    For the III section,
    Length of the sides of triangle = 6cm, 6cm and 8cm 
    Semi perimeter of triangle = (6 + 6 + 8)/2 cm = 10cm
    Using heron's formula,
    Area of the III triangular piece = √s (s-a) (s-b) (s-c)
                                           = √10(10 - 6) (10 - 6) (10 - 8) cm2
                                           = √10 × 4 × 4 × 2 cm2
                                           = 8√6 cm2

  • By: Admin
  • Solution

    Semi perimeter of the each triangular shape = (28 + 9 + 35)/2 cm = 36 cm
    Using heron's formula,
    Area of the each triangular shape = √s (s-a) (s-b) (s-c)
                                           = √36(36 - 28) (36 - 9) (36 - 35) cm2
                                           = √36 × 8 × 27 × 1 cm2
                                           = 36√6 cm= 88.2 cm2
    Total area of 16 tiles = 16 × 88.2 cm= 1411.2 cm2Cost of polishing tiles = 50p per cm2
    Total cost of polishing the tiles = Rs. (1411.2 × 0.5) = Rs. 705.6

  • By: Admin
  • Solution

    Let ABCD be the given trapezium with parallel sides AB = 25m and CD = 10mand the non-parallel sides AD = 13m and BC = 14m.
    CM ⊥ AB and CE || AD.
    In ΔBCE,
    BC = 14m, CE = AD = 13 m and
    BE = AB - AE = 25 - 10 = 15m 
    Semi perimeter of the ΔBCE = (15 + 13 + 14)/2 m = 21 m
    Using heron's formula,
    Area of the ΔBCE = √s (s-a) (s-b) (s-c)
                                           = √21(21 - 14) (21 - 13) (21 - 15) m2
                                           = √21 × 7 × 8 × 6 m2
                                           = 84 m
    also, area of the ΔBCE = 1/2 × BE × CM = 84 m
    ⇒ 1/2 × 15 × CM = 84 m
    ⇒ CM = 168/15 m
    ⇒ CM = 56/5 m
    Area of the parallelogram AECD = Base × Altitude = AE × CM = 10 × 84/5 = 112 m
    Area of the trapezium ABCD = Area of AECD + Area of ΔBCE
                                                    = (112+ 84) m2  = 196 m

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.