By Applying Pythagoras theorem in ΔPQR , we get
PR2 = PQ2 + QR2 = (13)2 = (12)2 + QR2 =169 = 144 + QR2
⇒ QR2 = 25 ⇒ QR = 5 cm
Now,
tan P = QR/PQ = 5/12
cot R = QR/PQ = 5/12
A/q
tan P – cot R = 5/12 - 5/12 = 0
By: Admin
Let ΔABC be a right-angled triangle, right-angled at B.
We know that sin A = BC/AC = 3/4
Let BC be 3k and AC will be 4k where k is a positive real number.
By Pythagoras theorem we get,
AC2 = AB2 + BC2
(4k)2 = AB2 + (3k)2
16k2 - 9k2 = AB2
AB2 =7k2
AB = √7 k
cos A = AB/AC = √7 k/4k = √7/4
tan A = BC/AB = 3k/√7 k = 3/√7
By: Admin
Let ΔABC be a right-angled triangle, right-angled at B.
We know that cot A = AB/BC = 8/15 (Given)
Let AB be 8k and BC will be 15k where k is a positive real number.
By Pythagoras theorem we get,
AC2 = AB2 + BC2
AC2 = (8k)2 + (15k)2
AC2 = 64k2 + 225k2
AC2=289k2
AC = 17 k
sin A = BC/AC = 15k/17k = 15/17
sec A = AC/AB = 17k/8 k = 17/8
By: Admin
Let ΔABC be a right-angled triangle, right-angled at B.
We know that sec θ = OP/OM = 13/12 (Given)
Let OP be 13k and OM will be 12k where k is a positive real number.
By Pythagoras theorem we get,
OP2 = OM2 + MP2
(13k)2 = (12k)2 + MP2
169k2 - 144k2 = MP2
MP2=25k2
MP = 5
Now,
sin θ = MP/OP = 5k/13k = 5/13
cos θ = OM/OP = 12k/13k = 12/13
tan θ = MP/OM = 5k/12k = 5/12
cot θ = OM/MP = 12k/5k = 12/5
cosec θ = OP/MP = 13k/5k = 13/5
By: Admin
Let ΔABC in which CD ⊥ AB.
A/q,
cos A = cos B
⇒ AD/AC = BD/BC
⇒ AD/BD = AC/BC
Let AD/BD = AC/BC = k
⇒ AD = kBD .... (i)
⇒ AC = kBC .... (ii)
By applying Pythagoras theorem in ΔCAD and ΔCBD we get,
CD2 = AC2 - AD2 …. (iii)
and also CD2 = BC2 - BD2 …. (iv)
From equations (iii) and (iv) we get,
AC2 - AD2 = BC2 - BD2
⇒ (kBC)2 - (k BD)2 = BC2 - BD2
⇒ k2 (BC2 - BD2) = BC2 - BD2
⇒ k2 = 1
⇒ k = 1
Putting this value in equation (ii), we obtain
AC = BC
⇒ ∠A = ∠B (Angles opposite to equal sides of a triangle are equal-isosceles triangle)
By: Admin
Let ΔABC in which ∠B = 90º and ∠C = θ
cot θ = BC/AB = 7/8
Let BC = 7k and AB = 8k, where k is a positive real number.
By Pythagoras theorem in ΔABC we get.
AC2 = AB2 + BC2
AC2 = (8k)2 + (7k)2
AC2 = 64k2 + 49k2
AC2=113k2
AC = √113 k
By: Admin
Let ΔABC in which ∠B = 90º,
cot A = AB/BC = 4/3
Let AB = 4k and BC = 3k, where k is a positive real number.
By Pythagoras theorem in ΔABC we get.
AC2 = AB2 + BC2
AC2 = (4k)2 + (3k)2
AC2 = 16k2 + 9k2
AC2=25k2
AC = 5k
tan A = BC/AB = 3/4
sin A = BC/AC = 3/5
cos A = AB/AC = 4/5
By: Admin
(i)
If BC is k, then AB will be√3, where k is a positive integer.
In ΔABC,
AC2 = AB2 + BC2
By: Admin
By: Admin
By: Admin
tan (A + B) = √3
⇒ tan (A + B) = tan 60°
⇒ (A + B) = 60° ... (i)
tan (A – B) = 1/√3
⇒ tan (A - B) = tan 30°
⇒ (A - B) = 30° ... (ii)
Adding (i) and (ii), we get
A + B + A - B = 60° + 30°
2A = 90°
A= 45°
Putting the value of A in equation (i)
45° + B = 60°
⇒ B = 60° - 45°
⇒ B = 15°
Thus, A = 45° and B = 15°
By: Admin
(i) False.
Let A = 30° and B = 60°, then
sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,
sin A + sin B = sin 30° + sin 60°
(i) tan 48° tan 23° tan 42° tan 67°
= tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1
(ii) cos 38° cos 52° - sin 38° sin 52°
= cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°
= sin 52° sin 38° - sin 38° sin 52° = 0
By: Admin
Given that,
tan 2A = cot (A− 18°)
cot (90° − 2A) = cot (A −18°)
90° − 2A = A− 18°
108° = 3A
A = 36°
By: Admin
Given that,
tan A = cot B
tan A = tan (90° − B)
A = 90° − B
A + B = 90°
By: Admin
Given that,
sec 4A = cosec (A − 20°)
cosec (90° − 4A) = cosec (A − 20°)
90° − 4A= A− 20°
110° = 5A
A = 22°
By: Admin
In a triangle, sum of all the interior angles
A + B + C = 180°
⇒ B + C = 180° - A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
⇒ sin (B+C)/2 = sin (90°-A/2)
⇒ sin (B+C)/2 = cos A/2
By: Admin
sin 67° + cos 75°
= sin (90° - 23°) + cos (90° - 15°)
= cos 23° + sin 15°
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
L.H.S. = cos A/(1+sin A) + (1+sin A)/cos A
= [cos2A + (1+sin A)2]/(1+sin A)cos A
= (cos2A + sin2A + 1 + 2sin A)/(1+sin A)cos A
= (1 + 1 + 2sin A)/(1+sin A)cos A
= (2+ 2sin A)/(1+sin A)cos A
= 2(1+sin A)/(1+sin A)cos A
= 2/cos A = 2 sec A = R.H.S.
(iv) (1 + sec A)/sec A = sin2A/(1-cos A)
L.H.S. = (1 + sec A)/sec A
= (1 + 1/cos A)/1/cos A
= (cos A + 1)/cos A/1/cos A
= cos A + 1
R.H.S. = sin2A/(1-cos A)
= (1 - cos2A)/(1-cos A)
= (1-cos A)(1+cos A)/(1-cos A)
= cos A + 1
L.H.S. = R.H.S.
(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.
L.H.S. = (cos A–sin A+1)/(cos A+sin A–1)
Dividing Numerator and Denominator by sin A,
= (cos A–sin A+1)/sin A/(cos A+sin A–1)/sin A
= (cot A - 1 + cosec A)/(cot A+ 1 – cosec A)
= (cot A - cosec2A + cot2A + cosec A)/(cot A+ 1 – cosec A) (using cosec2A - cot2A = 1)
= [(cot A + cosec A) - (cosec2A - cot2A)]/(cot A+ 1 – cosec A)
= [(cot A + cosec A) - (cosec A + cot A)(cosec A - cot A)]/(1 – cosec A + cot A)
= (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
= cot A + cosec A = R.H.S.
Dividing Numerator and Denominator of L.H.S. by cos A,
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7+tan2A+cot2A
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2 = (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)
= (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A
= 1 + 2 + 2 + 2 + tan2A + cot2A
= 7+tan2A+cot2A = R.H.S.
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
L.H.S. = (cosec A – sin A)(sec A – cos A)
= (1/sin A - sin A)(1/cos A - cos A)
= [(1-sin2A)/sin A][(1-cos2A)/cos A]
= (cos2A/sin A)×(sin2A/cos A)
= cos A sin A
R.H.S. = 1/(tan A+cotA)
= 1/(sin A/cos A +cos A/sin A)
= 1/[(sin2A+cos2A)/sin A cos A]
= cos A sin A
L.H.S. = R.H.S.