Introduction to Trigonometry CBSE Notes, Lectures

CBSE - Introduction to Trigonometry

  • By: Admin
  • In Δ ABC,∠B = 90º
    By Applying Pythagoras theorem , we get

    AC2 = AB2 + BC= (24)2 + 72 = (576+49) cm2 = 625 cm2
    ⇒ AC = 25

    (i) sin A = BC/AC = 7/25   
    cos A = AB/AC = 24/25

    (ii) sin C = AB/AC = 24/25
         cos C = BC/AC = 7/25

  • By: Admin

  • By Applying Pythagoras theorem in ΔPQR , we get
    PR2 = PQ2 + QR2 = (13)2 = (12)2 + QR= 169 = 144  + QR2
    ⇒  QR2 = 25 ⇒  QR = 5 cm

    Now,
    tan P = QR/PQ = 5/12
    cot R = QR/PQ = 5/12
    A/q
    tan P – cot R = 5/12 - 5/12 = 0

  • By: Admin
  • Let ΔABC be a right-angled triangle, right-angled at B.

    We know that sin A = BC/AC = 3/4

    Let BC be 3k and AC will be 4k where k is a positive real number.
     

    By Pythagoras theorem we get,
    AC2 = AB2 + BC
    (4k)2 = AB2 + (3k)2
    16k2 - 9k2 = AB2
    AB= 7k2
    AB = √7 k

    cos A = AB/AC = √7 k/4k = √7/4

    tan A = BC/AB = 3k/√7 k = 3/√7

  • By: Admin
  • Let ΔABC be a right-angled triangle, right-angled at B.

    We know that cot A = AB/BC = 8/15   (Given)
    Let AB be 8k and BC will be 15k where k is a positive real number. 

    By Pythagoras theorem we get,
    AC2 = AB2 + BC
    AC2 = (8k)2 + (15k)2
    AC2 = 64k2 + 225k2
    AC2 = 289k2
    AC = 17 k

    sin A = BC/AC = 15k/17k = 15/17

    sec A = AC/AB = 17k/8 k = 17/8

  • By: Admin

  •  

    Let ΔABC be a right-angled triangle, right-angled at B.

    We know that sec θ = OP/OM = 13/12   (Given)
    Let OP be 13k and OM will be 12k where k is a positive real number. 
    By Pythagoras theorem we get,
    OP2 = OM2 + MP
    (13k)2 = (12k)+ MP
    169k2 - 144k2 = MP2
    MP2 = 25k2

    MP = 5

    Now,

    sin θ = MP/OP = 5k/13k = 5/13

    cos θ = OM/OP = 12k/13k = 12/13

    tan θ = MP/OM = 5k/12k = 5/12

    cot θ = OM/MP = 12k/5k = 12/5

    cosec θ = OP/MP = 13k/5k = 13/5

  • By: Admin

  • Let ΔABC in which CD ⊥ AB.

    A/q,

    cos A = cos B

    ⇒ AD/AC = BD/BC

    ⇒ AD/BD = AC/BC

    Let AD/BD = AC/BC = k

    ⇒ AD = kBD  .... (i)

    ⇒ AC = kBC  .... (ii)

    By applying Pythagoras theorem in ΔCAD and ΔCBD we get,
    CD2 = AC2 - AD2 …. (iii)
    and also CD2 = BC2 - BD2 …. (iv)
    From equations (iii) and (iv) we get,
    AC2 - AD2 = BC2 - BD2
    ⇒ (kBC)2 - (k BD)2 = BC2 - BD2
    ⇒ k2 (BC2 - BD2) = BC2 - BD2
    ⇒ k2 = 1
    ⇒ k = 1
    Putting this value in equation (ii), we obtain
    AC = BC
    ⇒ ∠A = ∠B  (Angles opposite to equal sides of a triangle are equal-isosceles triangle)

  • By: Admin
  • Let ΔABC in which ∠B = 90º and ∠C = θ

    cot θ = BC/AB = 7/8

    Let BC = 7k and AB = 8k, where k is a positive real number.
    By Pythagoras theorem in ΔABC we get.
    AC2 = AB2 + BC
    AC2 = (8k)2 + (7k)2
    AC2 = 64k2 + 49k2
    AC2 = 113k2
    AC = √113 k

  • By: Admin
  • Let ΔABC in which ∠B = 90º,

    cot A = AB/BC = 4/3
    Let AB = 4k and BC = 3k, where k is a positive real number.
    By Pythagoras theorem in ΔABC we get.
    AC2 = AB2 + BC
    AC2 = (4k)2 + (3k)2
    AC2 = 16k2 + 9k2
    AC2 = 25k2
    AC = 5k
    tan A = BC/AB = 3/4
    sin A = BC/AC = 3/5
    cos A = AB/AC = 4/5

     

  • By: Admin
  •  


    (i)

    If BC is k, then AB will be√3, where k is a positive integer.

    In ΔABC,

    AC2 = AB2 + BC2

  • By: Admin
  • tan (A + B) = √3

    ⇒ tan (A + B) = tan 60°

    ⇒ (A + B) = 60° ... (i)
     tan (A – B) = 1/√3

    ⇒ tan (A - B) = tan 30°
    ⇒ (A - B) = 30° ... (ii)

    Adding (i) and (ii), we get
    A + B + A - B = 60° + 30°
    2A = 90°
    A= 45°
    Putting the value of A in equation (i)
    45° + B = 60°
    ⇒ B = 60° - 45°
    ⇒ B = 15°
    Thus, A = 45° and B = 15°
     

  • By: Admin
  • (i) False.
    Let A = 30° and B = 60°, then
    sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,
    sin A + sin B = sin 30° + sin 60°

    = 1/2 + √3/2 = 1+√3/2


    (ii) True.

    sin 0° = 0

    sin 30° = 1/2

    sin 45° = 1/√2

    sin 60° = √3/2

    sin  90° = 1

    Thus the value of sin θ increases as θ increases.

    (iii) False.

    cos 0° = 1

    cos 30° = √3/2

    cos 45° = 1/√2

    cos 60° = 1/2

    cos 90° = 0

    Thus the value of cos θ decreases as θ increases.

    (iv) sin θ = cos θ for all values of θ.

    This is true when θ = 45° 

    It is not true for all other values of θ.

    Hence, the given statement is false.

    (v) True.

    cot A = cos A/sin A

    cot 0° = cos 0°/sin 0° = 1/0 = undefined.

  • By: Admin
  • (i) sin 18°/cos 72°

        = sin (90° - 18°) /cos 72° 

        = cos 72° /cos 72° = 1


    (ii) tan 26°/cot 64°

        = tan (90° - 36°)/cot 64°

        = cot 64°/cot 64° = 1


    (iii) cos 48° - sin 42°

          = cos (90° - 42°) - sin 42°

          = sin 42° - sin 42° = 0


    (iv) cosec 31° - sec 59°

         = cosec (90° - 59°) - sec 59°
         = sec 59° - sec 59° = 0

  • By: Admin
  • (i) tan 48° tan 23° tan 42° tan 67°
        = tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°
        = cot 42° cot 67° tan 42° tan 67°
        = (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1

    (ii) cos 38° cos 52° - sin 38° sin 52°
        = cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°
        = sin 52° sin 38° - sin 38° sin 52° = 0

  • By: Admin
  • Given that,

    tan 2A = cot (A− 18°)

    cot (90° − 2A) = cot (A −18°)

    90° − 2A = A− 18°

    108° = 3A

    A = 36°

  • By: Admin
  • Given that,

    tan A = cot B

    tan A = tan (90° − B)

    A = 90° − B

    A + B = 90°

  • By: Admin
  • Given that,

    sec 4A = cosec (A − 20°)

    cosec (90° − 4A) = cosec (A − 20°)

    90° − 4A= A− 20°

    110° = 5A

    A = 22°

  • By: Admin
  • In a triangle, sum of all the interior angles

    A + B + C = 180°

    ⇒ B + C = 180° - A

    ⇒ (B+C)/2 = (180°-A)/2

    ⇒ (B+C)/2 = (90°-A/2)

    ⇒ sin (B+C)/2 = sin (90°-A/2)

    ⇒ sin (B+C)/2 = cos A/2

  • By: Admin
  • sin 67° + cos 75°
    = sin (90° - 23°) + cos (90° - 15°)
    = cos 23° + sin 15°

  • By: Admin
  • cosec2A - cot2A = 1
    ⇒ cosec2A = 1 + cot2A
    ⇒ 1/sin2A = 1 + cot2A
    ⇒sin2A = 1/(1+cot2A)

    Now,
    sin2A = 1/(1+cot2A)
    ⇒ 1 - cos2A = 1/(1+cot2A)
    ⇒cos2A = 1 - 1/(1+cot2A)
    ⇒cos2A = (1-1+cot2A)/(1+cot2A)
    ⇒ 1/sec2A = cot2A/(1+cot2A)
    ⇒ secA = (1+cot2A)/cot2A

    also,
    tan A = sin A/cos A and cot A = cos A/sin A
    ⇒ tan A = 1/cot A

  • By: Admin
  • We know that sec2A−tan2A=1

    ⇒tan2A=sec2A−1

    ⇒tan2A=sec2A−1

    ⇒tanA = √ sec2A−1−−−−−−−−    (1)

    We know that cos A = 1 / secA      (2)

    We know that sin2A+cos2A=1

    ⇒sin2A=1−cos2A

    Putting (2) in the above equation we get


     

    We know that  cosecA=1/ sinA

    Putting (3) in the above equation, we get

    cosecA=secA / √ sec2A−1        (4) 

     

    We know that  cotA=1 /tanA

    Putting (1) in the above equation, we get

    cotA=1 / √sec2A−1                    (5)

     (1), (2), (3), (4) and (5) shows all the other trigonometric ratios of ∠A in terms of sec A.

  • By: Admin
  • (i) (sin263° + sin227°)/(cos217° + cos273°)
       = [sin2(90°-27°) + sin227°]/[cos2(90°-73°) + cos273°)]
       = (cos227° + sin227°)/(sin227° + cos273°)
       = 1/1 =1                       (��� sin2A + cos2A = 1)

    (ii) sin 25° cos 65° + cos 25° sin 65°
       = sin(90°-25°) cos 65° + cos(90°-65°) sin 65°
       = cos 65° cos 65° + sin 65° sin 65°
       = cos265° + sin265° = 1

  • By: Admin
  • (i) (B) is correct.

    9 sec2A - 9 tan2A

    = 9 (sec2A - tan2A)
    = 9×1 = 9             (��� sec2 A - tan2 A = 1)


    (ii) (C) is correct

    (1 + tan θ + sec θ) (1 + cot θ - cosec θ)   

    = (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ)

    = (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ

    = (cos θ+sin θ)2-12/(cos θ sin θ)

    = (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ)

    = (1+ 2cos θ sin θ -1)/(cos θ sin θ)

    = (2cos θ sin θ)/(cos θ sin θ) = 2


    (iii) (D) is correct.

    (secA + tanA) (1 - sinA)

    = (1/cos A + sin A/cos A) (1 - sinA)

    = (1+sin A/cos A) (1 - sinA)

    = (1 - sin2A)/cos A

    = cos2A/cos A = cos A


    (iv) (D) is correct.

    1+tan2A/1+cot2

    = (1+1/cot2A)/1+cot2A

    = (cot2A+1/cot2A)×(1/1+cot2A)

    = 1/cot2A = tan2A

  • By: Admin
  • (i) (cosec θ - cot θ)= (1-cos θ)/(1+cos θ)
    L.H.S. =  (cosec θ - cot θ)2
               = (cosec2θ + cot2θ - 2cosec θ cot θ)
               = (1/sin2θ + cos2θ/sin2θ - 2cos θ/sin2θ)
               = (1 + cos2θ - 2cos θ)/(1 - cos2θ)
               = (1-cos θ)2/(1 - cosθ)(1+cos θ)
               = (1-cos θ)/(1+cos θ) = R.H.S.

    (ii)  cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
     L.H.S. = cos A/(1+sin A) + (1+sin A)/cos A
                = [cos2A + (1+sin A)2]/(1+sin A)cos A
                = (cos2A + sin2A + 1 + 2sin A)/(1+sin A)cos A
                = (1 + 1 + 2sin A)/(1+sin A)cos A
                = (2+ 2sin A)/(1+sin A)cos A
                = 2(1+sin A)/(1+sin A)cos A
                = 2/cos A = 2 sec A = R.H.S.

    (iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
    L.H.S. = tan θ/(1-cot θ) + cot θ/(1-tan θ)
               = [(sin θ/cos θ)/1-(cos θ/sin θ)] + [(cos θ/sin θ)/1-(sin θ/cos θ)]
               = [(sin θ/cos θ)/(sin θ-cos θ)/sin θ] + [(cos θ/sin θ)/(cos θ-sin θ)/cos θ]
               = sin2θ/[cos θ(sin θ-cos θ)] + cos2θ/[sin θ(cos θ-sin θ)]
               = sin2θ/[cos θ(sin θ-cos θ)] - cos2θ/[sin θ(sin θ-cos θ)]
               = 1/(sin θ-cos θ) [(sin2θ/cos θ) - (cos2θ/sin θ)]
               = 1/(sin θ-cos θ) × [(sin3θ - cos3θ)/sin θ cos θ]
               = [(sin θ-cos θ)(sin2θ+cos2θ+sin θ cos θ)]/[(sin θ-cos θ)sin θ cos θ]
               = (1 + sin θ cos θ)/sin θ cos θ
               = 1/sin θ cos θ + 1
               = 1 + sec θ cosec θ = R.H.S.

    (iv)  (1 + sec A)/sec A = sin2A/(1-cos A)
    L.H.S. = (1 + sec A)/sec A
               = (1 + 1/cos A)/1/cos A
               = (cos A + 1)/cos A/1/cos A
               = cos A + 1
    R.H.S. = sin2A/(1-cos A)
                = (1 - cos2A)/(1-cos A)
                = (1-cos A)(1+cos A)/(1-cos A)
                = cos A + 1
    L.H.S. = R.H.S.

    (v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec2A = 1+cot2A.
    L.H.S. = (cos A–sin A+1)/(cos A+sin A–1)
               Dividing Numerator and Denominator by sin A,
               = (cos A–sin A+1)/sin A/(cos A+sin A–1)/sin A
               = (cot A - 1 + cosec A)/(cot A+ 1 – cosec A)
               = (cot A - cosec2A + cot2A + cosec A)/(cot A+ 1 – cosec A) (using cosec2A - cot2A = 1)
               = [(cot A + cosec A) - (cosec2A - cot2A)]/(cot A+ 1 – cosec A)
               = [(cot A + cosec A) - (cosec A + cot A)(cosec A - cot A)]/(1 – cosec A + cot A)
               =  (cot A + cosec A)(1 – cosec A + cot A)/(1 – cosec A + cot A)
               =  cot A + cosec A = R.H.S.

    Dividing Numerator and Denominator of L.H.S. by cos A,

    = sec A + tan A = R.H.S.

    (vii) (sin θ - 2sin3θ)/(2cos3θ-cos θ) = tan θ
    L.H.S. = (sin θ - 2sin3θ)/(2cos3θ - cos θ)
               = [sin θ(1 - 2sin2θ)]/[cos θ(2cos2θ- 1)]
               = sin θ[1 - 2(1-cos2θ)]/[cos θ(2cos2θ -1)]
              = [sin θ(2cos2θ -1)]/[cos θ(2cos2θ -1)]
              = tan θ = R.H.S.

    (viii) (sin A + cosec A)+ (cos A + sec A)2 = 7+tan2A+cot2A
    L.H.S. = (sin A + cosec A)+ (cos A + sec A)2
                   = (sin2A + cosec2A + 2 sin A cosec A) + (cos2A + sec2A + 2 cos A sec A)
               = (sin2A + cos2A) + 2 sin A(1/sin A) + 2 cos A(1/cos A) + 1 + tan2A + 1 + cot2A
               = 1 + 2 + 2 + 2 + tan2A + cot2A
               = 7+tan2A+cot2A = R.H.S.

    (ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
    L.H.S. = (cosec A – sin A)(sec A – cos A)
               = (1/sin A - sin A)(1/cos A - cos A)
               = [(1-sin2A)/sin A][(1-cos2A)/cos A]
               = (cos2A/sin A)×(sin2A/cos A)
               = cos A sin A
    R.H.S. = 1/(tan A+cotA)
                = 1/(sin A/cos A +cos A/sin A)
                = 1/[(sin2A+cos2A)/sin A cos A]
                = cos A sin A
    L.H.S. = R.H.S.

    (x)  (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A
    L.H.S. = (1+tan2A/1+cot2A)
               = (1+tan2A/1+1/tan2A)
               = 1+tan2A/[(1+tan2A)/tan2A]
               = tan2A

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.