Lines and Angles CBSE Notes, Lectures

CBSE - Lines and Angles

  • By: Admin
  • In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.


    Answer
    Given,
    ∠AOC + ∠BOE = 70° and ∠BOD = 40°
    A/q,
    ∠AOC + ∠BOE +∠COE = 180° (Forms a straight line)
    ⇒ 70° +∠COE = 180°
    ⇒ ∠COE = 110°
    also,
    ∠COE +∠BOD + ∠BOE = 180° (Forms a straight line)
    ⇒ 110° +40° + ∠BOE = 180°
    ⇒ 150° + ∠BOE = 180°
    ⇒ ∠BOE = 30°

  • By: Admin
  •  

    Given,
    ∠POY = 90° and a : b = 2 : 3
    A/q,
    ∠POY + a + b = 180°
    ⇒ 90° + a + b = 180°
    ⇒ a + b = 90°
    Let a be 2x then will be 3x
    2x + 3x = 90°
    ⇒ 5x = 90°
    ⇒ x = 18°
    ∴ a = 2×18° = 36°
    and b = 3×18° = 54°
    also,
    b + c = 180° (Linear Pair)
    ⇒ 54° + c = 180°
    ⇒ c = 126°

  • By: Admin
  • Given,
    ∠PQR = ∠PRQ
    To prove,
    ∠PQS = ∠PRT
    A/q,
    ∠PQR +∠PQS = 180° (Linear Pair)
    ⇒ ∠PQS = 180° - ∠PQR --- (i)
    also,
    ∠PRQ +∠PRT = 180° (Linear Pair) 
    ⇒ ∠PRT = 180° - ∠PRQ
    ⇒ ∠PRQ = 180° - ∠PQR --- (ii) (∠PQR = ∠PRQ)
    From (i) and (ii)
    ∠PQS = ∠PRT = 180° - ∠PQR
    Therefore,  ∠PQS = ∠PRT

  • By: Admin
  • Given,
    x + y = w + z
    To Prove,
    AOB is a line or x + y = 180° (linear pair.)
    A/q,
    x + y + w + z = 360° (Angles around a point.)
    ⇒ (x + y) +  (w + z) = 360° 
    ⇒ (x + y) +  (x + y) = 360° (Given x + y = w + z)
    ⇒ 2(x + y) = 360°
    ⇒ (x + y) = 180°
    Hence, x + y makes a linear pair. Therefore, AOB is a staright line.

  • By: Admin
  • Given,
    OR is perpendicular to line PQ
    To prove,
    ∠ROS = 1/2(∠QOS – ∠POS)
    A/q,
    ∠POR = ∠ROQ = 90° (Perpendicular)
    ∠QOS = ∠ROQ + ∠ROS = 90° + ∠ROS --- (i)
    ∠POS = ∠POR - ∠ROS = 90° - ∠ROS --- (ii)
    Subtracting (ii) from (i)
    ∠QOS - ∠POS = 90° + ∠ROS - (90° - ∠ROS)
    ⇒ ∠QOS - ∠POS = 90° + ∠ROS - 90° + ∠ROS
    ⇒ ∠QOS - ∠POS = 2∠ROS
    ⇒ ∠ROS = 1/2(∠QOS – ∠POS)
    Hence, Proved.

  • By: Admin
  • Given,
    ∠XYZ = 64°
    YQ bisects ∠ZYP 

    ∠XYZ +∠ZYP = 180° (Linear Pair)
    ⇒ 64° +∠ZYP = 180° 
    ⇒ ∠ZYP = 116°
    also, ∠ZYP = ∠ZYQ + ∠QYP 
    ∠ZYQ = ∠QYP (YQ bisects ∠ZYP)
    ⇒ ∠ZYP = 2∠ZYQ 
    ⇒ 2∠ZYQ = 116°
    ⇒ ∠ZYQ = 58° = ∠QYP
    Now,
    ∠XYQ = ∠XYZ + ∠ZYQ 
    ⇒ ∠XYQ = 64° + 58°
    ⇒ ∠XYQ = 122°
    also,
    reflex ∠QYP = 180° + ∠XYQ
    ∠QYP = 180° + 122°
    ⇒ ∠QYP = 302°

  • By: Admin
  • x + 50° = 180° (Linear pair)
    ⇒ x = 130°
    also,
    y = 130° (Vertically opposite) 
    Now,
    x = y = 130° (Alternate interior angles)
    Alternate interior angles are equal.
    Therefore, AB || CD.

  • By: Admin
  • Given,
    AB || CD and CD || EF
    y : z = 3 : 7 
    Now,
    x + y = 180° (Angles on the same side of transversal.)
    also,
    ∠O = z (Corresponding angles) 
    and, y + ∠O = 180° (Linear pair) 
    ⇒ y + z = 180°
    A/q,
    y = 3w and z = 7w 
    3w + 7w = 180°
    ⇒ 10 w = 180°
    ⇒ w = 18°
    ∴ y = 3×18° = 54°
    and, z = 7×18° = 126°
    Now, 
    x + y = 180°
    ⇒ x + 54° = 180°
    ⇒ x = 126°

  • By: Admin
  • Given,
    AB || CD
    EF ⊥ CD
    ∠GED = 126°
    A/q,
    ∠FED = 90° (EF ⊥ CD)
    Now,
    ∠AGE = ∠GED (Since, AB || CD and GE is transversal. Alternate interior angles.)
    ∴ ∠AGE = 126°
    Also, ∠GEF = ∠GED - ∠FED
    ⇒ ∠GEF = 126° - 90°
    ⇒ ∠GEF = 36°
    Now,
    ∠FGE +∠AGE = 180° (Linear pair)
    ⇒ ∠FGE = 180° - 126°
    ⇒ ∠FGE = 54°

  • By: Admin
  • Given,

    PQ || ST, ∠PQR = 110° and ∠RST = 130°

    Construction,

    A line XY parallel to PQ and ST is drawn.

    ∠PQR + ∠QRX = 180° (Angles on the same side of transversal.)
    ⇒ 110° + ∠QRX = 180°
    ⇒ ∠QRX = 70°
    Also,
    ∠RST + ∠SRY = 180° (Angles on the same side of transversal.) 
    ⇒ 130° + ∠SRY = 180°
    ⇒ ∠SRY = 50°
    Now,
    ∠QRX +∠SRY + ∠QRS = 180°
    ⇒ 70° + 50° + ∠QRS = 180°
    ⇒ ∠QRS = 60°

  • By: Admin
  • Given,
    AB || CD, ∠APQ = 50° and ∠PRD = 127°
    A/q,
    x = 50° (Alternate interior angles.)
    ∠PRD + ∠RPB = 180° (Angles on the same side of transversal.)
    ⇒ 127° + ∠RPB = 180°
    ⇒ ∠RPB = 53° 
    Now,
    y + 50° + ∠RPB = 180° (AB is a straight line.)
    ⇒ y + 50° + 53° = 180°
    ⇒ y + 103° = 180°
    ⇒ y = 77°

  • By: Admin
  • In Fig. 6.33, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.

    ANSWER:

    Let us draw BE ⟂ PQ and CF ⟂ RS.

     As PQ || RS
    So, BE || CF

    By laws of reflection we know that,

    Angle of incidence = Angle of reflection

    Thus, ∠1 = ∠2 and ∠3 = ∠4  --- (i)

    also, ∠2 = ∠3     (alternate interior angles because BE || CF and a transversal line BC cuts them at B and C)    --- (ii)

    From (i) and (ii),

    ∠1 + ∠2 = ∠3 + ∠4

    ⇒ ∠ABC = ∠DCB

    ⇒ AB || CD      (alternate interior angles are equal)

  • By: Admin
  • 1. In Fig. 6.39, sides QP and RQ of ΔPQR are produced to points S and T respectively. If ∠SPR = 135° and ∠PQT = 110°, find ∠PRQ.

    Answer

    Given,
    ∠SPR = 135° and ∠PQT = 110°
    A/q,
    ∠SPR +∠QPR = 180° (SQ is a straight line.)
    ⇒ 135° +∠QPR = 180°
    ⇒ ∠QPR = 45°
    also,
    ∠PQT +∠PQR = 180° (TR is a straight line.)
    ⇒ 110° +∠PQR = 180°
    ⇒ ∠PQR = 70°
    Now,
    ∠PQR +∠QPR + ∠PRQ = 180° (Sum of the interior angles of the triangle.)
    ⇒ 70° + 45° + ∠PRQ = 180°
    ⇒ 115° + ∠PRQ = 180° 
    ⇒ ∠PRQ = 65°

  • By: Admin
  • In Fig. 6.40, ∠X = 62°, ∠XYZ = 54°. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of Δ XYZ, find ∠OZY and ∠YOZ.

    Answer
    Given,
    ∠X = 62°, ∠XYZ = 54°
    YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively.
    A/q,
    ∠X +∠XYZ + ∠XZY = 180° (Sum of the interior angles of the triangle.)
    ⇒ 62° + 54° + ∠XZY = 180°
    ⇒ 116° + ∠XZY = 180°
    ⇒ ∠XZY = 64°
    Now,
    ∠OZY = 1/2∠XZY (ZO is the bisector.)
    ⇒ ∠OZY = 32°
    also,
    ∠OYZ = 1/2∠XYZ (YO is the bisector.)
    ⇒ ∠OYZ = 27°
    Now,
    ∠OZY +∠OYZ + ∠O = 180° (Sum of the interior angles of the triangle.)
    ⇒ 32° + 27° + ∠O = 180°
    ⇒ 59° + ∠O = 180°
    ⇒ ∠O = 121°

  • By: Admin
  • In Fig. 6.41, if AB || DE, ∠BAC = 35° and ∠CDE = 53°, find ∠DCE.

    Answer

    Given,
    AB || DE, ∠BAC = 35° and ∠ CDE = 53°
    A/q,
    ∠BAC = ∠CED (Alternate interior angles.)
    ∴ ∠CED = 35°
    Now,
    ∠DCE +∠CED + ∠CDE = 180° (Sum of the interior angles of the triangle.)
    ⇒ ∠DCE + 35° + 53° = 180°
    ⇒ ∠DCE + 88° = 180°
    ⇒ ∠DCE = 92°

  • By: Admin
  • In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°, find ∠SQT.

    Answer

    Given,
    ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75° 
    A/q,
    ∠PRT +∠RPT + ∠PTR = 180° (Sum of the interior angles of the triangle.)
    ⇒ 40° + 95° + ∠PTR = 180°
    ⇒ 40° + 95° + ∠PTR = 180° 
    ⇒ 135° + ∠PTR = 180°
    ⇒ ∠PTR = 45°
    ∠PTR = ∠STQ = 45° (Vertically opposite angles.)
    Now,
    ∠TSQ +∠PTR + ∠SQT = 180° (Sum of the interior angles of the triangle.)
    ⇒ 75° + 45° + ∠SQT = 180°
    ⇒ 120° + ∠SQT = 180° 
    ⇒ ∠SQT = 60°

  • By: Admin
  • In Fig. 6.43, if PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°, then find the values of x and y.

    Answer
    Given,
    PQ ⊥ PS, PQ || SR, ∠SQR = 28° and ∠QRT = 65°
    A/q,
    x +∠SQR = ∠QRT (Alternate angles  as QR is transveersal.)
    ⇒ x + 28° = 65°
    ⇒ x = 37°
    also,
    ∠QSR = x
    ⇒ ∠QSR = 37°
    also,
    ∠QRS +∠QRT = 180° (Linea pair)
    ⇒ ∠QRS + 65° = 180°
    ⇒ ∠QRS = 115°
    Now,
    ∠P + ∠Q+ ∠R +∠S = 360° (Sum of the angles in a quadrilateral.)
    ⇒ 90° + 65° + 115° + ∠S = 360° 
    ⇒ 270° + y + ∠QSR = 360° 
    ⇒ 270° + y + 37° = 360° 
    ⇒ 307° + y = 360°
    ⇒ y = 53°

  • By: Admin
  • In Fig. 6.44, the side QR of ΔPQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that ∠QTR = 1/2∠QPR.

    AnswerGiven,
    Bisectors of ∠PQR and ∠PRS meet at point T.
    To prove,
    ∠QTR = 1/2∠QPR.
    Proof,
    ∠TRS = ∠TQR +∠QTR (Exterior angle of a triangle equals to the sum of the two interior angles.)
    ⇒ ∠QTR = ∠TRS - ∠TQR --- (i)
    also,
    ∠SRP = ∠QPR + ∠PQR
    ⇒ 2∠TRS = ∠QPR + 2∠TQR
    ⇒ ∠QPR =  2∠TRS - 2∠TQR 
    ⇒ 1/2∠QPR =  ∠TRS - ∠TQR --- (ii)
    Equating (i) and (ii)
    ∠QTR - ∠TQR = 1/2∠QPR
    Hence proved.
     

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.