Pair of Linear Equations in Two Variables CBSE Notes, Lectures

CBSE - Pair of Linear Equations in Two Variables

  • By: Admin
  • Let present age of Aftab be x
    And, present age of daughter is represented by y
    Then Seven years ago,
    Age of Aftab = -7
    Age of daughter = y-7
    According to the question,
    (- 7)  = 7 (– 7 )
    – 7 = 7 – 49
    x- 7= - 49 + 7
    – 7y = - 42 …(i)
    x = 7y – 42
    Putting y = 5, 6 and 7, we get
    x = 7 × 5 - 42 = 35 - 42 = - 7
    x = 7 × 6 - 42 = 42 – 42 = 0
    x = 7 × 7 – 42 = 49 – 42 = 7
     

    x -7 0 7
    y 5 6 7


    Three years from now ,
    Age of Aftab = +3
    Age of daughter = +3
    According to the question,
    (+ 3) = 3 (+ 3)
    + 3 = 3+ 9
    -3= 9-3
    -3= 6 …(ii)
    = 3+ 6
    Putting, = -2,-1 and 0, we get
    = 3 × - 2 + 6 = -6 + 6 =0
    = 3 × - 1 + 6 = -3 + 6 = 3
    = 3 × 0 + 6 = 0 + 6 = 6

     

    x 0 3 6
    y -2 -1 0


    Algebraic representation
    From equation (i) and (ii)
    – 7= – 42 …(i)
    - 3= 6 …(ii)
    Graphical representation

  • By: Admin
  •  

    Let cost of one bat = Rs x
    Cost of one ball = Rs y
    3 bats and 6 balls for Rs 3900 So that
    3+ 6y = 3900 … (i)
    Dividing equation by 3, we get
    + 2y = 1300
    Subtracting 2y both side we get
    x = 1300 – 2
    Putting y = -1300, 0 and 1300 we get
    x = 1300 – 2 (-1300) = 1300 + 2600 = 3900
    = 1300 -2(0) = 1300 - 0 = 1300
    x = 1300 – 2(1300) = 1300 – 2600 = - 1300
     

    x 3900 1300 -1300
    y -1300 0 1300


    Given that she buys another bat and 2 more balls of the same kind for Rs 1300
    So, we get
    x + 2= 1300 … (ii)
    Subtracting 2y both side we get
    = 1300 – 2y
    Putting y = - 1300, 0 and 1300 we get
    x = 1300 – 2 (-1300) = 1300 + 2600 = 3900
    = 1300 – 2 (0) = 1300 - 0 = 1300
    = 1300 – 2(1300) = 1300 – 2600 = -1300
     

    x 3900 1300 -1300
    y -1300 0 1300


    Algebraic representation
    3+ 6y = 3900 … (i)
    + 2= 1300 … (ii)
    Graphical representation,

  • By: Admin
  •  

    Let cost each kg of apples = Rs x
    Cost of each kg of grapes = Rs y
    Given that the cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs 160
    So that
    = 160 … (i)
    2x = 160 - y
    x = (160 – y)/2
    Let y = 0 , 80 and 160,  we get
    x = (160 – ( 0 )/2 = 80
    x = (160- 80 )/2 = 40
    x = (160 – 2 × 80)/2 = 0
     

    x 80 40 0
    y 0 80 160


    Given that the cost of 4 kg of apples and 2 kg of grapes is Rs 300
    So we get
    4x + 2= 300 … (ii)
    Dividing by 2 we get
    2x + y = 150
    Subtracting 2x both side, we get
    = 150 – 2x
    Putting x = 0 , 50 , 100 we get
    = 150 – 2 × 0 = 150
    = 150 – 2 ×  50 = 50
    = 150 – 2 × (100) = -50
     

    x 0 50 100
    y 150 50 -50


    Algebraic representation,
    2y = 160 … (i)
    4x + 2y = 300 … (ii)

    Graphical representation,

  • By: Admin
  • Let number of boys = x
    Number of girls = y
    Given that total number of student is 10 so that
    = 10
    Subtract y both side we get
    = 10 – y
    Putting = 0 , 5, 10 we get
    = 10 – 0 = 10
    = 10 – 5 = 5
    = 10 – 10 = 0
     

    x 10 5
    y 0 5


    Given that If the number of girls is 4 more than the number of boys
    So that
    + 4
    Putting x = -4, 0, 4, and we get
    = - 4 + 4 = 0
    = 0 + 4 = 4
    = 4 + 4 = 8
     

    x -4 0 4
    y 0 4 8


    Graphical representation

    Therefore, number of boys = 3 and number of girls = 7.

  • By: Admin
  • Let cost of pencil = Rs x
    Cost of pens = Rs y
    5 pencils and 7 pens together cost Rs 50,
    So we get
    5x + 7y = 50
    Subtracting 7y both sides we get
    5x = 50 – 7y
    Dividing by 5 we get
    x = 10 - 7 y /5
    Putting value of y = 5 , 10 and 15 we get
    x = 10 – 7 × 5/5 = 10 – 7 = 3
    x = 10 – 7 × 10/5 = 10 – 14 = - 4

    x = 10 – 7 × 15/5 = 10 – 21 = - 11

     

    x 3 -4 -11
    y 5 10 15


    Given that 7 pencils and 5 pens together cost Rs 46
    7x + 5y = 46
    Subtracting 7x both side we get
    5y = 46 – 7x
    Dividing by 5 we get
    y = 46/5 - 7x/5
    y = 9.2 – 1.4x
    Putting x = 0 , 2 and 4 we get
    y = 9.2 – 1.4 × 0 = 9.2 – 0 = 9.2
    y = 9.2 – 1.4 (2) = 9.2 – 2.8 = 6.4
    y = 9.2 – 1.4 (4) = 9.2 – 5.6 = 3.6
     

    x 0 2 4
    y 9.2 6.4 3.6



    Graphical representation

    Therefore, cost of one pencil = Rs 3 and cost of one pen = Rs 5.

  • By: Admin
  • (i) 5x – 4y + 8 = 0
    7x + 6y – 9 = 0

    Comparing these equation with
    a1x + b1y + c1 = 0
    a2x + b2y + c2= 0

    We get
    a1 = 5, b1 = -4, and c1 = 8
    a2 =7, b2 = 6 and c2 = -9
    a1/a2 = 5/7,
    b1/b2 = -4/6 and
    c1/c2 = 8/-9
    Hence, a1/a2 ≠ b1/b2

    Therefore, both are intersecting lines at one point.

    (ii) 9x + 3y + 12 = 0
    18x + 6y + 24 = 0
    Comparing these equations with

    a1x + b1y + c1 = 0

    a2x + b2y + c2= 0
    We get
    a1 = 9, b1 = 3, and c1 = 12
    a2 = 18, b2 = 6 and c2 = 24
    a1/a2 = 9/18 = 1/2
    b1/b2 = 3/6 = 1/2 and
    c1/c2 = 12/24 = 1/2
    Hence, a1/a2 = b1/b= c1/c2

    Therefore, both lines are coincident

    (iii) 6x – 3y + 10 = 0
    2x – y + 9 = 0
    Comparing these equations with

    a1x + b1y + c1 = 0

    a2x + b2y + c2= 0

    We get
    a1 = 6, b1 = -3, and c1 = 10
    a2 = 2, b2 = -1 and c2 = 9
    a1/a2 = 6/2 = 3/1
    b1/b2 = -3/-1 = 3/1 and
    c1/c2 = 12/24 = 1/2
    Hence, a1/a2 = b1/b c1/c2

    Therefore, both lines are parallel

  • By: Admin
  • On comparing the ratios a1/a2 , b1/b2 and c1/c2 find out whether the following pair of linear equations are consistent, or inconsistent.
    (i) 3x + 2y = 5 ; 2x – 3y = 7
    (ii) 2x – 3y = 8 ; 4x – 6y = 9
    (iii) 3/2x + 5/3y = 7 ; 9– 10y = 14
    (iv) 5x – 3y = 11 ; – 10x + 6y = –22
    (v) 4/3x + 2y =8 ; 2x + 3y = 12 

    Answer

    (i) 3x + 2y = 5 ; 2x – 3y = 7
    a1/a2 = 3/2
    b1/b2 = -2/3 and
    c1/c2 = 5/7
    Hence, a1/a2 ≠ b1/b2
    These linear equations are intersecting each other at one point and thus have only one possible solution. Hence, the pair of linear equations is consistent.

    (ii) 2x – 3y = 8 ; 4x – 6y = 9
    a1/a2 = 2/4 = 1/2
    b1/b2 = -3/-6 = 1/2 and
    c1/c2 = 8/9
    Hence, a1/a2 = b1/b c1/c2

    Therefore, these linear equations are parallel to each other and thus have no possible solution. Hence, the pair of linear equations is inconsistent.

    (iii) 3/2x + 5/3y = 7 ; 9– 10y = 14
    a1/a2 = 3/2/9 = 1/6
    b1/b2 = 5/3/-10 = -1/6 and
    c1/c2 = 7/14 = 1/2
    Hence, a1/a2 ≠ b1/b2

    Therefore, these linear equations are intersecting each other at one point and thus have only one possible solution. Hence, the pair of linear equations is consistent.

    (iv) 5x – 3y = 11 ; – 10x + 6y = –22
    a1/a2 = 5/-10 = -1/2
    b1/b2 = -3/6 = -1/2 and
    c1/c2 = 11/-22 = -1/2
    Hence, a1/a2 = b1/b2 = c1/c2

    Therefore, these linear equations are coincident pair of lines and thus have infinite number of possible solutions. Hence, the pair of linear equations is consistent.

    (v) 4/3x + 2y =8 ; 2x + 3y = 12
    a1/a2 = 4/3/2 = 2/3
    b1/b2 = /3 and
    c1/c2 = 8/12 = 2/3
    Hence, a1/a2 = b1/b2 = c1/c2

    Therefore, these linear equations are coincident pair of lines and thus have infinite number of possible solutions. Hence, the pair of linear equations is consistent.

  • By: Admin
  • Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain the solution graphically:
    (i) x + y = 5, 2x + 2y = 10

    (ii) x – y = 8, 3x – 3y = 16

    (iii) 2x + y – 6 = 0, 4x – 2y – 4 = 0

    (iv) 2x – 2y – 2 = 0, 4x – 4y – 5 = 0

    Answer

    (i) x + y = 5; 2x + 2y = 10
    a1/a2 = 1/2
    b1/b2 = 1/2 and
    c1/c2 = 5/10 = 1/2
    Hence, a1/a2 = b1/b2 = c1/c2
    Therefore, these linear equations are coincident pair of lines and thus have infinite number of possible solutions. Hence, the pair of linear equations is consistent.

     

    x + y = 5

    x = 5 - 

     

    x 4 3 2
    y 1 2 3


    And, 2x + 2y = 10
    x = 10-2y/2
     

    x 4 3 2
    y 1 2 3


    Graphical representation

     

    From the figure, it can be observed that these lines are overlapping each other. Therefore, infinite solutions are possible for the given pair of equations.

     

    (ii) x – y = 8, 3x – 3y = 16
    a1/a2 = 1/3
    b1/b2 = -1/-3 = 1/3 and
    c1/c2 = 8/16 = 1/2
    Hence, a1/a2 = b1/b c1/c2

    Therefore, these linear equations are parallel to each other and thus have no possible solution. Hence, the pair of linear equations is inconsistent.

    (iii) 2x + y – 6 = 0, 4x – 2y – 4 = 0
    a1/a2 = 2/4 = 1/2
    b1/b2 = -1/2 and
    c1/c2 = -6/-4 = 3/2
    Hence, a1/a2 ≠ b1/b2

    Therefore, these linear equations are intersecting each other at one point and thus have only one possible solution. Hence, the pair of linear equations is consistent.

    2x + y - 6 = 0
    y = 6 - 2x

     

    x 0 1 2
    y 6 4 2


    And, 4x - 2y -4 = 0
    y = 4x - 4/2
     

    x 1 2 3
    y 0 2 4


    Graphical representation

    From the figure, it can be observed that these lines are intersecting each other at the only one point i.e., (2,2) which is the solution for the given pair of equations.

    (iv) 2x – 2y – 2 = 0, 4x – 4y – 5 = 0
    a1/a2 = 2/4 = 1/2
    b1/b2 = -2/-4 = 1/2 and
    c1/c2 = 2/5
    Hence, a1/a2 = b1/b c1/c

    Therefore, these linear equations are parallel to each other and thus, have no possible solution. Hence, the pair of linear equations is inconsistent.

  • By: Admin
  • Let length of rectangle = x m
    Width of the rectangle = m
    According to the question,
    y - x = 4 ... (i)
    y + x = 36 ... (ii)
    y - x = 4
    y = x + 4 

    x 0 8 12
    y 4 12 16


    y + x = 36
     

    x 0 36 16
    y 36 0 20


    Graphical representation 


    From the figure, it can be observed that these lines are intersecting each other at only point i.e., (16, 20). Therefore, the length and width of the given garden is 20 m and 16 m respectively.

  • By: Admin
  • Given the linear equation 2x + 3y - 8 = 0, write another linear equations in two variables such that the geometrical representation of the pair so formed is:
    (i) intersecting lines

    (ii) parallel lines
    (iii) coincident lines

    (i) Intersecting lines:
    For this condition,
    a1/a2 ≠ b1/b2
    The second line such that it is intersecting the given line is
    2x + 4y - 6 = 0 as
    a1/a2 = 2/2 = 1
    b1/b2 = 3/4 and
    a1/a2 ≠ b1/b2

    (ii) Parallel lines

    For this condition,

    a1/a2 = b1/b c1/c2
    Hence, the second line can be
    4x + 6y - 8 = 0 as
    a1/a2 = 2/4 = 1/2

    b1/b2 = 3/6 = 1/2 and
    c1/c2 = -8/-8 = 1
    and a1/a2 = b1/b c1/c2

    (iii) Coincident lines
    For coincident lines,
    a1/a2 = b1/b2 = c1/c2
    Hence, the second line can be
    6x + 9y - 24 = 0 as
    a1/a2 = 2/6 = 1/3
    b1/b2 = 3/9 = 1/3 and
    c1/c2 = -8/-24 = 1/3
    and a1/a2 = b1/b2 = c1/c2

  • By: Admin
  • x - y + 1 = 0
    x = y - 1
     

    x 0 1 2
    y 1 2 3


    3x + 2y - 12 = 0

    x = 12 - 2y/3
     

    x 4 2 0
    y 0 3 6


    Graphical representation 

    From the figure, it can be observed that these lines are intersecting each other at point (2, 3) and x-axis at ( - 1, 0) and (4, 0). Therefore, the vertices of the triangle are (2, 3), ( - 1, 0), and (4, 0).

  • By: Admin
  • Solve the following pair of linear equations by the substitution method.
    (i) = 14 ; – = 4

    (ii) – = 3 ; s/3 + t/2 = 6
    (iii) 3x – y = 3 ; 9x – 3y = 9 

    (iv) 0.2x + 0.3y = 1.3 ; 0.4x + 0.5y = 2.3
    (v) √2x+ √3y = 0 ; √3x - √8y = 0 

    (vi) 3/2x - 5/3y = -2 ; x/3 + y/2 = 13/6


    Answer

    (i) x + y = 14 ... (i)

    x – y = 4 ... (ii)
    From equation (i), we get

    x = 14 - y ... (iii)
    Putting this value in equation (ii), we get

    (14 - y) - y = 4

    14 - 2y = 4

    10 = 2y

    = 5 ... (iv)

    Putting this in equation (iii), we get

    = 9

    ∴ = 9 and y = 5


    (ii) – = 3 ... (i)
    s/3 + t/2 = 6 ... (ii)
    From equation (i), we gett + 3
    Putting this value in equation (ii), we get
    t+3/3 + t/2 = 6
    2t + 6 + 3t = 36
    5t = 30
    t = 30/5 ... (iv)
    Putting in equation (iii), we obtain
    s = 9
    ∴ s = 9, t = 6

    (iii) 3x - = 3 ... (i)
    9x - 3y = 9 ... (ii)
    From equation (i), we get
    y = 3x - 3 ... (iii)
    Putting this value in equation (ii), we get
    9x - 3(3x - 3) = 9
    9x - 9x + 9 = 9
    9 = 9
    This is always true.
    Hence, the given pair of equations has infinite possible solutions and the relation between these variables can be given by
    y = 3x - 3
    Therefore, one of its possible solutions is x = 1, y = 0.

    (iv) 0.2x + 0.3y = 1.3 ... (i) 
    0.4x + 0.5y = 2.3 ... (ii)
    0.2x + 0.3y = 1.3
    Solving equation (i), we get
    0.2x = 1.3 – 0.3y
    Dividing by 0.2, we get
    x = 1.3/0.2 - 0.3/0.2
    x = 6.5 – 1.5 y …(iii)
    Putting the value in equation (ii), we get
    0.4x + 0.5y = 2.3
    (6.5 – 1.5y) × 0.4x + 0.5y = 2.3
    2.6 – 0.6y + 0.5y = 2.3
    -0.1y = 2.3 – 2.6
    = -0.3/-0.1
    y = 3
    Putting this value in equation (iii) we get
    x = 6.5 – 1.5 y
    x = 6.5 – 1.5(3)
    x = 6.5 - 4.5
    x = 2
    ∴ = 2 and y = 3 

    (vi) 3/2x - 5/3y = -2 ... (i)
    x/3 + y/2 = 13/6 ... (ii)
    From equation (i), we get
    9x - 10y = -12
    x = -12 + 10y/9 ... (iii)
    Putting this value in equation (ii), we get

  • By: Admin
  • 2x + 3= 11 ... (i)
    Subtracting 3y both side we get
    2x = 11 – 3y … (ii)
    Putting this value in equation second we get
    2x – 4y = – 24 … (iii)
    11- 3y – 4y = - 24
    7y = - 24 – 11
    -7y = - 35
    y = - 35/-7
    y = 5
    Putting this value in equation (iii) we get
    2x = 11 – 3 × 5
    2x = 11- 15
    2x = - 4
    Dividing by 2 we get
    x = - 2
    Putting the value of x and y
    y = mx + 3.
    5 = -2m +3
    2m = 3 – 5
    m = -2/2
    m = -1

  • By: Admin
  • Let larger number = x
    Smaller number = y
    The difference between two numbers is 26
    x – y = 26
    x = 26 + y
    Given that one number is three times the other
    So x = 3y
    Putting the value of x we get
    26y = 3y
    -2y = - 2 6
    y = 13
    So value of x = 3y
    Putting value of y, we get
    x = 3 × 13 = 39
    Hence the numbers are 13 and 39.

  • By: Admin
  • Let first angle = x
    And second number = y
    As both angles are supplementary so that sum will 180
    x + y = 180
    x = 180 - y ... (i)
    Difference is 18 degree so that
    x – y = 18
    Putting the value of we get
    180 – y – y = 18
    - 2y = -162
    y = -162/-2
    y = 81
    Putting the value back in equation (i), we get
    x = 180 – 81 = 99Hence, the angles are 99º and 81º.

  • By: Admin
  •  

    Let cost of each bat = Rs x
    Cost of each ball = Rs y


    Given that coach of a cricket team buys 7 bats and 6 balls for Rs 3800.
    7x + 6y = 3800
    6y = 3800 – 7x
    Dividing by 6, we get
    y = (3800 – 7x)/6 … (i)


    Given that she buys 3 bats and 5 balls for Rs 1750 later.
    3x + 5= 1750
    Putting the value of y
    3x + 5 ((3800 – 7x)/6) = 1750
    Multiplying by 6, we get
    18x + 19000 – 35x = 10500
    -17x =10500 - 19000
    -17x = -8500
    x = - 8500/- 17
    = 500
    Putting this value in equation (i) we get
    = ( 3800 – 7 × 500)/6
    = 300/6
    = 50

    Hence cost of each bat = Rs 500 and cost of each balls = Rs 50.

  • By: Admin
  •  

    Let the fixed charge for taxi = Rs x
    And variable cost per km = Rs y
    Total cost = fixed charge + variable charge
    Given that for a distance of 10 km, the charge paid is Rs 105
    x + 10y = 105 … (i)
    x = 105 – 10y
    Given that for a journey of 15 km, the charge paid is Rs 155
    x + 15y = 155
    Putting the value of x we get
    105 – 10y + 15y = 155
    5y = 155 – 105
    5y = 50
    Dividing by 5, we get
    y = 50/5 = 10
    Putting this value in equation (i) we get
    = 105 – 10 × 10
    = 5
    People have to pay for traveling a distance of 25 km
    x + 25y
    = 5 + 25 × 10
    = 5 + 250
    =255

    A person have to pay Rs 255 for 25 Km.

  • By: Admin
  •  

    Let Numerator = x
    Denominator = y
    Fraction will = x/y
    A fraction becomes 9/11, if 2 is added to both the numerator and the denominator
    (x + 2)/y+2 = 9/11

    By Cross multiplication, we get
    11x + 22 = 9y + 18
    Subtracting 22 both side, we get
    11x = 9y – 4
    Dividing by 11, we get
    = 9y – 4/11 … (i)
    Given that 3 is added to both the numerator and the denominator it becomes 5/6.
    If, 3 is added to both the numerator and the denominator it becomes 5/6
    (x+3)/+3  = 5/6 … (ii)
    By Cross multiplication, we get
    6x + 18 = 5y + 15
    Subtracting the value of x, we get
    6(9y – 4 )/11 + 18 = 5y + 15
    Subtract 18 both side we get
    6(9y – 4 )/11 = 5y - 3
    54 – 24 = 55- 33
    -y = -9
    y = 9
    Putting this value of y in equation (i), we get
    = 9y – 4
    11 … (i)
    x = (81 – 4)/77
    x = 77/11
    x = 7

    Hence our fraction is 7/9.

  • By: Admin
  • Let present age of Jacob = x year
    And present Age of his son is = y year
    Five years hence,
    Age of Jacob will = x + 5 year
    Age of his son will = y + 5year
    Given that the age of Jacob will be three times that of his son
    x + 5 = 3(+ 5)
    Adding 5 both side, we get
    x = 3y + 15 - 5
    x = 3y + 10 … (i)
    Five years ago,
    Age of Jacob will = x - 5 year
    Age of his son will = y - 5 year
    Jacob’s age was seven times that of his son
    x – 5 = 7(y -5)
    Putting the value of x from equation (i) we get
    3+ 10 – 5 = 7y – 35
    3y + 5 = 7y – 35
    3y – 7y = -35 – 5
    -4y = - 40
    y = - 40/- 4
    y = 10 year
    Putting the value of y in equation first we get
    x = 3 × 10 + 10
    x = 40 years
    Hence, Present age of Jacob = 40 years and present age of his son = 10 years.

  • By: Admin
  • (i) x + y =5 and 2x –3y = 4
    By elimination method
    x + y =5 ... (i)
    2x –3y = 4 ... (ii)
    Multiplying equation (i) by (ii), we get
    2x + 2y = 10 ... (iii)
    2x –3y = 4 ... (ii)
    Subtracting equation (ii) from equation (iii), we get
    5y = 6
    y = 6/5
    Putting the value in equation (i), we get
    x = 5 - (6/5) = 19/5

    Hence, x = 19/5 and y = 6/5

    By substitution methodx + y = 5 ... (i)
    Subtracting y both side, we get
    x = 5 - y ... (iv)
    Putting the value of x in equation (ii) we get
    2(5 – y) – 3y = 4
    -5y = - 6
    y = -6/-5 = 6/5
    Putting the value of y in equation (iv) we get
    x = 5 – 6/5
    x = 19/5
    Hence, x = 19/5 and y = 6/5 again 

     

    (ii) 3x + 4y = 10 and 2x – 2y = 2
    By elimination method
    3x + 4y = 10 .... (i)
    2x – 2y = 2 ... (ii)
    Multiplying equation (ii) by 2, we get
    4x – 4y = 4 ... (iii)
    3x + 4y = 10 ... (i)
    Adding equation (i) and (iii), we get

    7x + 0 = 14
    Dividing both side by 7, we get
    x = 14/7 = 2
    Putting in equation (i), we get
    3x + 4y = 10
    3(2) + 4y = 10
    6 + 4y = 10
    4y = 10 – 6
    4y = 4
    y = 4/4 = 1 Hence, answer is x = 2, y = 1

     

    By substitution method
    3x + 4y = 10 ... (i)
    Subtract 3x both side, we get
    4y = 10 – 3x
    Divide by 4 we get
    y = (10 - 3x )/4
    Putting this value in equation (ii), we get
    2x – 2y = 2 ... (i)
    2x – 2(10 - 3x )/4) = 2
    Multiply by 4 we get
    8x - 2(10 – 3x) = 8
    8x - 20 + 6x = 8
    14x = 28
    x = 28/14 = 2
    = (10 - 3x)/4

    = 4/4 = 1

    Hence, answer is x = 2, y = 1 again.

    (iii) 3x – 5y – 4 = 0 and 9x = 2y + 7
    By elimination method
    3x – 5y – 4 = 0
    3x – 5y = 4 ...(i)
    9x = 2y + 7
    9x – 2= 7 ... (ii)
    Multiplying equation (i) by 3, we get
    9 x – 15 y = 11 ... (iii)
    9x – 2y = 7 ... (ii)
    Subtracting equation (ii) from equation (iii), we get
    -13y = 5
    y = -5/13
    Putting value in equation (i), we get
    3x – 5y = 4 ... (i)
    3x - 5(-5/13) = 4
    Multiplying by 13 we get
    39x + 25 = 52
    39x = 27
    x =27/39 = 9/13
    Hence our answer is x = 9/13 and y = - 5/13

    By substitution method
    3x – 5y = 4 ... (i)
    Adding 5y both side we get
    3x = 4 + 5y
    Dividing by 3 we get
    x = (4 + 5y )/3 ... (iv)
    Putting this value in equation (ii) we get
    9x – 2y = 7 ... (ii)
    9 ((4 + 5)/3) – 2y = 7
    Solve it we get
    3(4 + 5y ) – 2y = 7
    12 + 15y – 2y = 7
    13y = - 5
    y = -5/13

    Hence we get x = 9/13 and y = - 5/13 again.

     

    (iv) x/2 + 2y/3 = - 1 and x – y/3 = 3
    By elimination method
    x/2 + 2y/3 = -1 ... (i)
    x – y/3 = 3 ... (ii)
    Multiplying equation (i) by 2, we get
    x + 4y/3 = - 2 ... (iii)
    x – y/3 = 3 ... (ii)
    Subtracting equation (ii) from equation (iii), we get
    5y/3 = -5
    Dividing by 5 and multiplying by 3, we get
    = -15/5
    = - 3
    Putting this value in equation (ii), we get
    x – y/3 = 3 ... (ii)
    x – (-3)/3 = 3
    x + 1 = 3
    x = 2

    Hence our answer is x = 2 and y = −3.

    By substitution method
    x – y/3 = 3 ... (ii)
    Add y/3 both side, we get
    = 3 + y/3 ... (iv)
    Putting this value in equation (i) we get
    x/2 + 2y/3 = - 1 ... (i)
    (3+ y/3)/2 + 2y/3 = -1
    3/2 + y/6 + 2y/3 = - 1
    Multiplying by 6, we get
    9 + y + 4= - 6
    5y = -15
    y = - 3

    Hence our answer is x = 2 and y = −3

  • By: Admin
  • (i) Let the fraction be x/y
    According to the question,x + 1/y - 1 = 1
    ⇒ = -2 ... (i)x/y+1 = 1/2
    ⇒ 2x - = 1 ... (ii)
    Subtracting equation (i) from equation (ii), we get
    x = 3 ... (iii)
    Putting this value in equation (i), we get
    3 - y = -2
    -y = -5
    y = 5
    Hence, the fraction is 3/5

  • By: Admin
  • (ii) Let present age of Nuri = x
    and present age of Sonu = y
    According to the given information,question,(x - 5) = 3(y - 5)
    x - 3y = -10 ... (i)
    (x + 10y) = 2(y + 10)
    x - 2y = 10 ... (ii)
    Subtracting equation (i) from equation (ii), we get
    y = 20 ... (iii)
    Putting this value in equation (i), we get
    x - 60 = -10
    = 50
    Hence, age of Nuri = 50 years and age of Sonu = 20 years

  • By: Admin
  • (iii) Let the unit digit and tens digits of the number be and respectively.
    Then, number = 10y + x
    Number after reversing the digits = 10x + y
    According to the question,
    x + y = 9 ... (i)
    9(10x) = 2(10x + y)
    88y - 11x = 0
    x + 8y =0 ... (ii)
    Adding equation (i) and (ii), we get
    9y = 9
    y = 1 ... (iii)
    Putting the value in equation (i), we get
    x = 8
    Hence, the number is 10y + x = 10 × 1 + 8 = 18.

  • By: Admin
  • (iv) Let the number of Rs 50 notes and Rs 100 notes be x and y respectively.
    According to the question,
    = 25 ... (i)
    50x + 100y = 2000 ... (ii)
    Multiplying equation (i) by 50, we get
    50x + 50y = 1250 ... (iii)
    Subtracting equation (iii) from equation (ii), we get
    50y = 750
    y = 15
    Putting this value in equation (i), we have x = 10
    Hence, Meena has 10 notes of Rs 50 and 15 notes of Rs 100.

  • By: Admin
  • (v) Let the fixed charge for first three days and each day charge thereafter be Rs and Rs respectively.
    According to the question,
    + 4y = 27 ... (i)
    + 2y = 21 ... (ii)
    Subtracting equation (ii) from equation (i), we get
    2y = 6
    y = 3 ... (iii)
    Putting in equation (i), we get
    x + 12 =27
    x = 15
    Hence, fixed charge = Rs 15 and Charge per day = Rs 3.

  • By: Admin
  • (i) x – 3y – 3 = 0
    3x – 9y – 2 =0
    a1/a2 = 1/3
    b1/b2 = -3/-9 = 1/3 and
    c1/c2 = -3/-2 = 3/2
    a1/a2 = b1/b c1/c2

    Therefore, the given sets of lines are parallel to each other. Therefore, they will not intersect each other and thus, there will not be any solution for these equations.

    (ii) 2x + y = 5
    3x +2y = 8
    a1/a2 = 2/3
    b1/b2 = 1/2 and
    c1/c2 = -5/-8 = 5/8
    a1/a2 ≠ b1/b2

    Therefore, they will intersect each other at a unique point and thus, there will be a unique solution for these equations.

    By cross-multiplication method,
    x/b1c2-b2c= y/c1a2-c2a= 1/a1b2-a2b1
    x/-8-(-10) = y/-15+16 = 1/4-3
    x/2 = y/1 = 1
    x/2 = 1, y/1 = 1
    ∴ = 2, = 1.

    (iii) 3x – 5y = 20
    6x – 10y = 40
    a1/a2 = 3/6 = 1/2
    b1/b2 = -5/-10 = 1/2 and
    c1/c2 = -20/-40 = 1/2
    a1/a2 = b1/b= c1/c2

    Therefore, the given sets of lines will be overlapping each other i.e., the lines will be coincident to each other and thus, there are infinite solutions possible for these equations.

    (iv) x – 3y – 7 = 0
    3x – 3y – 15= 0
    a1/a2 = 1/3
    b1/b2 = -3/-3 = 1 and
    c1/c2 = -7/-15 = 7/15
    a1/a2 ≠ b1/b2

    Therefore, they will intersect each other at a unique point and thus, there will be a unique solution for these equations.

    By cross-multiplication,

    x/45-(21) = y/-21-(-15) = 1/-3-(-9)
    x/24 = y/-6 = 1/6
    x/24 = 1/6 and y/-6 = 1/6
    = 4 and = -1
    ∴ = 4, = -1.

  • By: Admin
  • 2x + 3y -7 = 0

    (a – b)x + (a + b)y - (3a +b –2) = 0

    a1/a2 = 2/a-b = 1/2
    b1/b2 = -7/a+b and
    c1/c2 = -7/-(3a+b-2) = 7/(3a+b-2)
    For infinitely many solutions,a1/a2 = b1/b2 = c1/c2

    2/a-= 7/3a+b-26a + 2b - 4 = 7a - 7b
    a - 9b = -4 ... (i)

    2/a-= 3/a+b
    2a + 2b = 3a - 3b
    a - 5b = 0 ... (ii)

    Subtracting equation (i) from (ii), we get
    4b = 4
    b = 1
    Putting this value in equation (ii), we get
    a - 5 × 1 = 0
    a = 5
    Hence, a = 5 and b = 1 are the values for which the given equations give infinitely many solutions.

  • By: Admin
  • 3x + -1 = 0

    (2k –1)x + (k –1)y - (2k + 1) = 0

    a1/a2 = 3/2k-1
    b1/b2 = 1/k-1 and
    c1/c2 = -1/-2k-1 = 1/2k+1
    For no solutions,
    a1/a2 = b1/b c1/c2
    3/2k-1 = 1/k-1 ≠ 1/2k+1

    3/2k-1 = 1/k-1
    3k - 3 = 2k - 1
    k = 2
    Hence, for k = 2, the given equation has no solution.

  • By: Admin
  • 8x +5y = 9 ... (i)
    3x +2y = 4 ... (ii)
    From equation (ii), we get
    x = 4-2y/3 ... (iii)
    Putting this value in equation (i), we get
    8(4-2y/3) + 5y = 9
    32 - 16y +15y = 27
    -y = -5
    y = 5 ... (iv)
    Putting this value in equation (ii), we get
    3x + 10 = 4
    x = -2
    Hence, x = -2, = 5
    By cross multiplication again, we get

    8x + 5y -9 = 0

    3x + 2y - 4 = 0

    x/-20-(-18) = y/-27-(-32) = 1/16-15
    x/-2 = y/5 = 1/1
    x/-2 = 1 and y/5 = 1
    x = -2 and y = 5

  • By: Admin
  • Let be the fixed charge of the food and be the charge for food per day.

    According to the question,

    x + 20y = 1000 ... (i)

    x + 26y = 1180 ... (ii)
    Subtracting equation (i) from equation (ii), we get

    6y = 180

    y = 180/6 = 30
    Putting this value in equation (i), we get
    x + 20 × 30 = 1000
    x = 1000 - 600
    x = 400
    Hence, fixed charge = Rs 400 and charge per day = Rs 30

  • By: Admin
  • Let the fraction be x/y
    According to the question,

    x-1/y = 1/3
    ⇒ 3x - y = 3... (i)
    x/y+8 = 1/4
    ⇒ 4x - y = 8 ... (ii)
    Subtracting equation (i) from equation (ii), we get

    x = 5 ... (iii)

    Putting this value in equation (i), we get

    15 - = 3

    = 12
    Hence, the fraction is 5/12

  • By: Admin
  • Let the number of right answers and wrong answers be and respectively.

    According to the question,

    3x - = 40 ... (i)

    4x - 2y = 50

    ⇒ 2x - = 25 ... (ii)

    Subtracting equation (ii) from equation (i), we get
    = 15 ... (iii)
    Putting this value in equation (ii), we get

    30 - = 25

    = 5

    Therefore, number of right answers = 15
    And number of wrong answers = 5
    Total number of questions = 20

  • By: Admin
  • Let the speed of 1st car and 2nd car be u km/h and v km/h.
    Respective speed of both cars while they are travelling in same direction = (u - v) km/h

    Respective speed of both cars while they are travelling in opposite directions i.e., travelling towards each other = (v) km/h

    According to the question,

    5(v) = 100

    ⇒ u - v = 20 ... (i)

    1(u + v) = 100 ... (ii)

    Adding both the equations, we get

    2u = 120

    u = 60 km/h ... (iii)

    Putting this value in equation (ii), we obtain
    v = 40 km/h
    Hence, speed of one car = 60 km/h and speed of other car = 40 km/h

  • By: Admin
  • Let length and breadth of rectangle be unit and y unit respectively.
    Area = xy
    According to the question,
    (x - 5) (y + 3) = xy - 9
    ⇒ 3x - 5y - 6 = 0 ... (i)
    (x + 3) (y + 2) = xy + 67
    ⇒ 2x - 3y - 61 = 0 ... (ii)
    By cross multiplication, we get
    x/305-(-18) = y/-12-(-183) = 1/9-(-10)
    x/323 = y/171 = 1/19
    = 17, y = 9
    Hence, the length of the rectangle = 17 units and breadth of the rectangle = 9 units.

  • By: Admin
  • (i) 1/2x + 1/3y = 2
    1/3x + 1/2= 13/6
    Let 1/p and 1/q, then the equations changes as below:
    p/2 + q/3 = 2
    ⇒ 3p + 2q -12 = 0 ... (i)
    p/3 + q/2 = 13/6
    ⇒ 2p + 3q -13 = 0 ... (ii)

    By cross-multiplication method, we get

    p/-26-(-36) = q/-24-(-39) = 1/9-4
    p/10 = q/15 = 1/5
    p/10 = 1/5 and q/15 = 1/5
    = 2 and = 3
    1/= 2 and 1/= 3
    Hence, = 1/2 and = 1/3

    (ii) 2/√x +3/√y = 2
    4/√x - 9/√y = -1
    Let 1/√p and 1/√y = q, then the equations changes as below:
    2p + 3q = 2 ... (i)
    4p - 9q = -1 ... (ii)
    Multiplying equation (i) by 3, we get
    6p + 9q = 6 ... (iii)
    Adding equation (ii) and (iii), we get

    10p = 5

    p = 1/2 ... (iv)

    Putting in equation (i), we get

    2 × 1/2 + 3q = 2
    3q = 1
    q = 1/3

    = 1/√x = 1/2
    x = 2
    x = 4
    and
    = 1/√y = 1/3
    y = 3
    y = 9
    Hence, x = 4, y = 9


    (iii) 4/x + 3y = 14
    3/x - 4y = 23
    Putting 1/x = p in the given equations, we get
    4p + 3y = 14
    ⇒ 4p + 3y - 14 = 0
    3p - 4y = 23
    ⇒ 3p - 4y -23 = 0
    By cross-multiplication, we get
    p/-69-56 = y/-42-(-92) = 1/-16-9
    ⇒ -p/125 = y/50 = -1/25
    Now,
    -p/125 = -1/25 and y/50 = -1/25
    ⇒ p = 5 and y = -2
    Also, p = 1/x = 5
    ⇒ x = 1/5
    So, x = 1/5 and y = -2 is the solution.

    (iv) 5/x-1 + 1/y-2 = 2
    6/x-1 - 3/y-2 = 1
    Putting 1/x-1 = p and 1/y-2 = q in the given equations, we obtain
    5p + q = 2 ... (i)
    6p - 3q = 1 ... (ii)
    Now, by multiplying equation (i) by 3 we get
    15p + 3q = 6 ... (iii)
    Now, adding equation (ii) and (iii)
    21p = 7
    ⇒ p = 1/3
    Putting this value in equation (ii) we get,
     6×1/3 - 3q =1
     ⇒ 2-3q = 1
     ⇒ -3q = 1-2
     ⇒ -3q = -1
     ⇒ q = 1/3
    Now,
    p = 1/x-1 = 1/3
     ⇒1/x-1 = 1/3
     ⇒ 3 = - 1
     ⇒ x = 4
    Also,
    q = 1/y-2 = 1/3
     ⇒ 1/y-2 = 1/3
     ⇒ 3 = y-2
     ⇒ y = 5
    Hence, x = 4 and y = 5 is the solution.

    (v) 7x-2y/xy = 5
     ⇒ 7x/xy - 2y/xy = 5
     ⇒ 7/y - 2/x = 5 ... (i)
    8x+7y/xy = 15
     ⇒ 8x/xy + 7y/xy = 15
     ⇒ 8/y + 7/x = 15 ... (ii)
    Putting 1/x = p and 1/y = q in (i) and (ii) we get,
    7q - 2p = 5 ... (iii)
    8q + 7p = 15 ... (iv)
    Multiplying equation (iii) by 7 and multiplying equation (iv) by 2 we get,
    49q - 14p = 35 ... (v)
    16q + 14p = 30 ... (vi)
    Now, adding equation (v) and (vi) we get,
    49q - 14p + 16q + 14p = 35 + 30
    ⇒ 65q = 65
    ⇒ q = 1
    Putting the value of q in equation (iv)
    8 + 7p = 15
    ⇒ 7p = 7
    ⇒ p = 1
    Now,
    p = 1/x = 1
    ⇒ 1/x = 1
    ⇒ x = 1
    also, q = 1 = 1/y
    ⇒ 1/y = 1
    ⇒ = 1
    Hence, =1 and y = 1 is the solution.

    (vi) 6x + 3y = 6xy
    ⇒ 6x/xy + 3y/xy = 6
    ⇒ 6/y + 3/x = 6 ... (i)
    2x + 4y = 5xy
    ⇒ 2x/xy + 4y/xy = 5
    ⇒ 2/y + 4/x = 5 ... (ii)
    Putting 1/x = p and 1/y = q in (i) and (ii) we get,
    6q + 3p - 6 = 0
    2q + 4p - 5 = 0
    By cross multiplication method, we get
    p/-30-(-12) = q/-24-(-15) = 1/6-24
    p/-18 = q/-9 = 1/-18
    p/-18 = 1/-18 and q/-9 = 1/-18
    = 1 and q = 1/2
    = 1/x = 1 and q = 1/y = 1/2
    = 1, y = 2
    Hence, = 1 and = 2

    (vii) 10/x+y + 2/x-y = 4
    15/x+y - 5/x-y = -2
    Putting 1/x+y = p and 1/x-y = q in the given equations, we get:
    10p + 2q = 4
    ⇒ 10p + 2q - 4 = 0 ... (i)
    15p - 5q = -2
    ⇒ 15p - 5q + 2 = 0 ... (ii)
    Using cross multiplication, we get
    p/4-20 = q/-60-(-20) = 1/-50-30
    p/-16 = q/-80 = 1/-80
    p/-16 = 1/-80 and q/-80 = 1/-80
    p = 1/5 and q = 1
    p = 1/x+y = 1/5 and q = 1/x-y = 1
    x + y = 5 ... (iii)
    and x - y = 1 ... (iv)
    Adding equation (iii) and (iv), we get
    2x = 6
    x = 3 .... (v)
    Putting value of x in equation (iii), we get
    y = 2
    Hence, x = 3 and y = 2

    (viii) 1/3x+y + 1/3x-y = 3/4
    1/2(3x-y) - 1/2(3x-y) = -1/8
    Putting 1/3x+y = p and 1/3x-y = q in the given equations, we get
    p + q = 3/4 ... (i)
    p/2 - q/2 = -1/8
    = -1/4 ... (ii)
    Adding (i) and (ii), we get
    2p = 3/4 - 1/4
    2p = 1/2
    = 1/4
    Putting the value in equation (ii), we get
    1/4 - q = -1/4
    q = 1/4 + 1/4 = 1/2
    p = 1/3x+y = 1/4
    3x + y = 4 ... (iii)
    q = 1/3x-y = 1/2
    3x - y = 2 ... (iv)
    Adding equations (iii) and (iv), we get
    6x = 6
    x = 1 ... (v)
    Putting the value in equation (iii), we get
    3(1) + y = 4
    y = 1
    Hence, x = 1 and y = 1

  • By: Admin
  • Let the speed of Ritu in still water and the speed of stream be x km/h
    and y km/h respectively.
    Speed of Ritu while rowing
    Upstream = (x - y) km/h

    Downstream = (x + y) km/h

    According to question,

    2(x + y) = 20

    ⇒ x + y = 10 ... (i)
    2(x - y) = 4
    ⇒ x - y = 2 ... (ii)
    Adding equation (i) and (ii), we get

    Putting this equation in (i), we get

    y = 4

    Hence, Ritu's speed in still water is 6 km/h and the speed of the current is 4 km/h.

  • By: Admin
  • Let the number of days taken by a woman and a man be x and y respectively.
    Therefore, work done by a woman in 1 day = 1/x

    According to the question,

    4(2/x + 5/y) = 1

    2/x + 5/y = 1/4

    3(3/x + 6/y) = 1

    3/x + 6/y = 1/3

    Putting 1/x = p and 1/q in these equations, we get

    2p + 5q = 1/4

    By cross multiplication, we get

    p/-20-(-18) = q/-9-(-18) = 1/144-180

    p/-2 = q/-1 = 1/-36

    p/-2 = -1/36 and q/-1 = 1/-36

    = 1/18 and q = 1/36

    p = 1/x = 1/18 and q = 1/y = 1/36

    = 18 and = 36

    Hence, number of days taken by a woman = 18 and number of days taken by a man = 36

  • By: Admin
  • Let the speed of train and bus be u km/h and v km/h respectively.
    According to the given information,

    60/u + 240/= 4 ... (i)
    100/u + 200/= 25/6 ... (ii)
    Putting 1/u = p and 1/v = q in the equations, we get
    60p + 240q = 4 ... (iii)
    100p + 200q = 25/6
    600p + 1200q = 25 ... (iv)
    Multiplying equation (iii) by 10, we get
    600p + 2400q = 40 .... (v)
    Subtracting equation (iv) from (v), we get1200q = 15
    q = 15/200 = 1/80 ... (vi)
    Putting equation (iii), we get
    60p + 3 = 4
    60p = 1
    p = 1/60
    p = 1/u = 1/60 and q = 1/v = 1/80
    u = 60 and v = 80
    Hence, speed of train = 60 km/h and speed of bus = 80 km/h.

  • By: Admin
  • Let the age of Ani and Biju be x and y years respectively.

    Therefore, age of Ani’s father, Dharam = 2 × x = 2x years

    And age of Biju’s sister Cathy  = y / 2 years

    Case (i) :When Ani is older than Biju by 3 years,

    x − y = 3 …...............(i)

    2x – y / 2 = 30

    4x − y = 60 …...............(ii)

    Subtracting (i) from (ii), we obtain

    3x = 60 − 3 = 57

    x = 57 / 3 = 19

    Therefore, age of Ani = 19 years

    And age of Biju = 19 − 3 = 16 years

    Case (ii) :When Biju is older than Ani,

    y − x = 3 …........ (I)

    2x – y / 2 = 30

    4x − y = 60 …...............(ii)

    Adding (i) and (ii), we obtain

    3x = 63

    x = 21

    Therefore, age of Ani = 21 years

    And age of Biju = 21 + 3 = 24 years.

  • By: Admin
  • Let those friends were having Rs x and y with them.

    Using the information given in the question, we obtain

    x + 100 = 2(y − 100)

    x + 100 = 2y − 200

    x − 2y = −300 (i)

    And, 6(x − 10) = (y + 10)

    6x − 60 = y + 10

    6x − y = 70 (ii)

    Multiplying equation (ii) by 2, we obtain

    12x − 2y = 140 (iii)

    Subtracting equation (i) from equation (iii), we obtain

    11x = 140 + 300

    11x = 440

    x = 40

    Using this in equation (i), we obtain

    40 − 2y = −300

    40 + 300 = 2y

    2y = 340

    y = 170

    Therefore, those friends had Rs 40 and Rs 170 with them respectively.

  • By: Admin
  • Let the speed of the train be x km/h and the time taken by train to travel the given distance be t hours and the distance to travel was d km. We know that,

    x =d  / t

    Or, d = xt (i)

    Using the information given in the question, we obtain

    By using equation (i), we obtain

    3x − 10t = 30 (iii)

    Adding equations (ii) and (iii), we obtain

    x = 50

    Using equation (ii), we obtain

    (−2) × (50) + 10t = 20

    −100 + 10t = 20

    10t = 120

    = 12 hours

    From equation (i), we obtain

    Distance to travel = d = xt

    = 50 × 12

    = 600 km

    Hence, the distance covered by the train is 600 km.

  • By: Admin
  • Let the number of rows be x and number of students in a row be y.

    Total students of the class

    = Number of rows × Number of students in a row

    xy

    Using the information given in the question,

    Condition 1

    Total number of students = (x − 1) (y + 3)

    xy = (− 1) (y + 3) = xy − y + 3x − 3

    3x − y − 3 = 0

    3x − y = 3 (i)

    Condition 2

    Total number of students = (x + 2) (y − 3)

    xy = xy + 2y − 3x − 6

    3x − 2y = −6 (ii)

    Subtracting equation (ii) from (i),

    (3x − y) − (3x − 2y) = 3 − (−6)

    − y + 2y = 3 + 6

    y = 9

    By using equation (i), we obtain

    3x − 9 = 3

    3x = 9 + 3 = 12

    x = 4

    Number of rows = x = 4

    Number of students in a row = y = 9

    Number of total students in a class = xy = 4 × 9 = 36

  • By: Admin
  • Let the number of rows be x and number of students in a row be y.

    Total students of the class

    = Number of rows × Number of students in a row

    xy

    Using the information given in the question,

    Condition 1

    Total number of students = (x − 1) (y + 3)

    xy = (− 1) (y + 3) = xy − y + 3x − 3

    3x − y − 3 = 0

    3x − y = 3 (i)

    Condition 2

    Total number of students = (x + 2) (y − 3)

    xy = xy + 2y − 3x − 6

    3x − 2y = −6 (ii)

    Subtracting equation (ii) from (i),

    (3x − y) − (3x − 2y) = 3 − (−6)

    − y + 2y = 3 + 6

    y = 9

    By using equation (i), we obtain

    3x − 9 = 3

    3x = 9 + 3 = 12

    x = 4

    Number of rows = x = 4

    Number of students in a row = y = 9

    Number of total students in a class = xy = 4 × 9 = 36

  • By: Admin
  • Given that,

    ∠C = 3∠B = 2(∠A + ∠B)

    3∠B = 2(∠A + ∠B)

    3∠B = 2∠A + 2∠B

    ∠B = 2∠A

    2 ∠A − ∠B = 0 … (i)

    We know that the sum of the measures of all angles of a triangle is 180°. Therefore,

    ∠A + ∠B + ∠C = 180°

    ∠A + ∠B + 3 ∠B = 180°

    ∠A + 4 ∠B = 180° … (ii)

    Multiplying equation (i) by 4, we obtain

    8 ∠A − 4 ∠B = 0 … (iii)

    Adding equations (ii) and (iii), we obtain

    9 ∠A = 180°

    ∠A = 20°

    From equation (ii), we obtain

    20° + 4 ∠B = 180°

    4 ∠B = 160°

    ∠B = 40°

    ∠C = 3 ∠B

    = 3 × 40° = 120°

    Therefore, ∠A, ∠B, ∠C are 20°, 40°, and 120° respectively.

  • By: Admin
  • 5x − y = 5

    Or, y = 5x − 5

    The solution table will be as follows.

    x

    0

    1

    2

    y

    −5

    0

    5

    3x − y = 3

    Or, y = 3x − 3

    The solution table will be as follows.

    x

    0

    1

    2

    y

    − 3

    0

    3

    The graphical representation of these lines will be as follows.

     

    It can be observed that the required triangle is ΔABC formed by these lines and y-axis.

    The coordinates of vertices are A (1, 0), B (0, − 3), C (0, − 5).

  • By: Admin
  • (i)px + qy = p − … (1)

    qx − py = p + … (2)

    Multiplying equation (1) by p and equation (2) by q, we obtain

    p2x + pqy = p2 − pq … (3)

    q2x − pqy = pq + q2 … (4)

    Adding equations (3) and (4), we obtain

    p2x + q2 p2 + q2

    (p2 + q2x = p2 + q2

    From equation (1), we obtain

    p (1) + qy = p − q

    qy = − q

    y = − 1

     

    (ii)ax + by = c … (1)

    bx + ay = 1 + c … (2)

    Multiplying equation (1) by a and equation (2) by b, we obtain

    a2aby ac … (3)

    b2x + aby = b + bc … (4)

    Subtracting equation (4) from equation (3),

    (a2 − b2ac − bc − b

    From equation (1), we obtain

    ax by = c

    Or, bx − ay = 0 … (1)

    ax + by = a2 + b2 … (2)

    Multiplying equation (1) and (2) by b and respectively, we obtain

    b2− aby = 0 … (3)

    a2x + aby a3 + ab2 … (4)

    Adding equations (3) and (4), we obtain

    b2a2x = a3 + ab2

    x (b2 + a2) = a (a2 + b2)

    x = a

    By using (1), we obtain

    b (a) − ay = 0

    ab − ay = 0

    ay = ab

    b

    (iv) (a − bx + (a + by = a2− 2ab − b2 … (1)

    (a + b) (x + y) = a2 + b2

    (a + bx + (a + ba2 + b2 … (2)

    Subtracting equation (2) from (1), we obtain

    (a − bx − (a + bx = (a2 − 2ab − b2) − (a2 + b2)

    (a − b − a − bx = − 2ab − 2b2

    − 2bx = − 2b (a + b)

    x = a + b

    Using equation (1), we obtain

    (a − b) (a + b) + (a + by = a2 − 2ab − b2

    a2 − b2 + (a + ba2− 2ab − b2

    (a + by = − 2ab

    (v) 152x − 378y = − 74

    76x − 189y = − 37

     … (1)

    − 378+ 152y = − 604

    − 189x + 76y = − 302 … (2)

    Substituting the value of in equation (2), we obtain

    − (189)2 y + 189 × 37 + (76)2 y = − 302 × 76

    189 × 37 + 302 × 76 = (189)2 y − (76)2 y

    6993 + 22952 = (189 − 76) (189 + 76) y

    29945 = (113) (265) y

    = 1

    From equation (1), we obtain

  • By: Admin
  • We know that the sum of the measures of opposite angles in a cyclic quadrilateral is 180°.

    Therefore, ∠A + ∠C = 180

    4y + 20 − 4x = 180

    − 4x + 4y = 160

    x − y = − 40 (i)

    Also, ∠B + ∠D = 180

    3y − 5 − 7x + 5 = 180

    − 7x + 3y = 180 (ii)

    Multiplying equation (i) by 3, we obtain

    3x − 3y = − 120 (iii)

    Adding equations (ii) and (iii), we obtain

    − 7x + 3x = 180 − 120

    − 4x = 60

    x = −15

    By using equation (i), we obtain

    − y = − 40

    −15 − y = − 40

    y = −15 + 40 = 25

    ∠A = 4y + 20 = 4(25) + 20 = 120°

    ∠B = 3y − 5 = 3(25) − 5 = 70°

    ∠C = − 4x = − 4(− 15) = 60°

    ∠D = − 7x + 5 = − 7(−15) + 5 = 110°

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.