Polynomials CBSE Notes, Lectures

CBSE - Polynomials

  • By: Admin
  • Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

    (i) 4x2 - 3x + 7

    (ii) y2 + √2

    (iii) 3√t + t√2

    (iv) y + 2/y

    (v) x10 + y3 + t50

    Answer

     

    (i) 4x2 - 3x + 7
    There is only one variable x with whole number power so this polynomial in one variable.

    (ii)  y2 + √2

    There is only one variable y with whole number power so this polynomial in one variable.

    (iii) 3√2 + t√2 

    There is only one variable t but in 3√t power of t is 1/2 which is not a whole number so 3√t + t√2 is not a polynomial.

     

    (iv) y + 2/y

    There is only one variable but 2/y = 2y-1 so the power is not a whole number so y + 2/y is not a polynomial.

    (v) x10 + y3 + t50

    There are three variable xy and t and there powers are whole number so this polynomial in three variable.

  • By: Admin
  • Write the coefficients of x2 in each of the following:
    (i) 2 + x2 + x
    (ii) 2 - x2 + x3

    (iv) √2x - 1

    Answer

    (i) coefficients of x2 = 1
    (ii) coefficients of x2 = -1
    (iii) coefficients of x2 = π/2
    (iv) coefficients of x2 = 0

  • By: Admin
  • Degree of a polynomial is the highest power of the variable in the polynomial.

    Binomial has two terms in it. Therefore, binomial of degree 35 can be written as x35+ x34.

    Monomial has only one term in it. Therefore, monomial of degree 100 can be written as x100

  • By: Admin
  • Write the degree of each of the following polynomials:

    (i) 5x3 + 4x2 + 7x 

    (ii) 4 – y2 

    (iii) 5t – √7

    (iv) 3

     

    Answer

    (i) 5x3 has highest power in the given polynomial which power is 3. Therefore, degree of polynomial is 3.

    (ii) – y2  has highest power in the given polynomial which power is 2. Therefore, degree of polynomial is 2.

    (iii) 5t has highest power in the given polynomial which power is 1. Therefore, degree of polynomial is 1.

    (iv) There is no variable in the given polynomial. Therefore, degree of polynomial is 0.

  • By: Admin
  • Classify the following as linear, quadratic and cubic polynomial:

    (i) x2 + x
    ANS: Quadratic Polynomial

    (ii) x - x3
    ANS: Cubic Polynomial

    (iii) y + y2 +4
    ANS: Quadratic Polynomial

    (iv) 1 + x
    ANS: Linear Polynomial

    (v) 3t
    ANS: Linear Polynomial

    (vi) r2

    ANS: Quadratic Polynomial

    (vii) 7x3
    ANS: Cubic Polynomial

  • By: Admin
  • Find the value of the polynomial at 5+ 4x2 + 3 at

    (i) x = 0 (ii) x = - 1 (iii) x = 2

     

    Answer

     

    (i) p(x) = 5+ 4x2 + 3

        p(0) = 5(0) + 4(0)2 + 3
               = 3

    (ii) p(x) = 5+ 4x2 + 3
        p(-1) = 5(-1) + 4(-1)2 + 3
               = 5 - 4(1) + 3 = -6
     

    (iii) p(x) = 5+ 4x2 + 3

        p(2) = 5(2) + 4(2)2 + 3
               = 10 - 16 + 3 = -3

  • By: Admin
  • Find p(0), p(1) and p(2) for each of the following polynomials:

    (i) p(y) = y2 - y + 1

    (ii) p(t) = 2 + t + 2t2 - t3
    (iii) p(x) = x3 

    (iv) p(x) = (x - 1) (x + 1)

     

    Answer

     

    (i) p(y) = y2 - y + 1
    p(0) = (0)2 - (0) + 1 = 1
    p(1) = (1)2 - (1) + 1 = 1
    p(2) = (2)2 - (2) + 1 = 3

    (ii) p(t) = 2 + t + 2t2 - t3
    p(0) = 2 + 0 + 2 (0)2 - (0)3 = 2
    p(1) = 2 + (1) + 2(1)2 - (1)3
    = 2 + 1 + 2 - 1 = 4
    p(2) = 2 + 2 + 2(2)2 - (2)3
    = 2 + 2 + 8 - 8 = 4

    (iii) p(x) = x3
    p(0) = (0)3 = 0
    p(1) = (1)3 = 1
    p(2) = (2)3 = 8


    (iv) p(x) = (x - 1) (x + 1)
    p(0) = (0 - 1) (0 + 1) = (- 1) (1) = - 1
    p(1) = (1 - 1) (1 + 1) = 0 (2) = 0
    p(2) = (2 - 1 ) (2 + 1) = 1(3) = 3

  • By: Admin
  • Find the zero of the polynomial in each of the following cases:
    (i) p(x) = x + 5 

    (ii) p(x) = x - 5 

    (iii) p(x) = 2x + 5
    (iv) p(x) = 3x - 2 

    (v) p(x) = 3x 

    (vi) p(x) = axa ≠ 0
    (vii) p(x) = cx + d, c ≠ 0, c, are real numbers.

     

    Answer

     

    (i) p(x) = x + 5 

    p(x) = 0

    x + 5 = 0

    x = -5

    Therefore, x = -5 is a zero of polynomial p(x) = x + 5 .

     

    (ii) p(x) = x - 5

    p(x) = 0

    x - 5 = 0

    x = 5

    Therefore, x = 5 is a zero of polynomial p(x) = x - 5.

     

    (iii) p(x) = 2x + 5

    p(x) = 0

    2x + 5 = 0
    2x = -5
    x = -5/2
    Therefore, x = -5/2 is a zero of polynomial p(x) = 2x + 5.

    (iv) p(x) = 3x - 2
    p(x) = 0
    3x - 2 = 0
    x = 2/3
    Therefore, x = 2/3 is a zero of polynomial p(x) = 3x - 2.

    (v) p(x) = 3x
    p(x) = 0
    3x = 0
    x = 0
    Therefore, x = 0 is a zero of polynomial p(x) = 3x.

    (vi) p(x) = ax
    p(x) = 0
    ax = 0
    = 0
    Therefore, x = 0 is a zero of polynomial p(x) = ax.

    (vii) p(x) = cx + d
    p(x) = 0
    cx + d = 0
    x = -d/c
    Therefore, x = -d/c is a zero of polynomial p(x) = cx + d.

  • By: Admin
  • By Long Division,

    Therefore, remainder obtained is 5when x3 - ax2 + 6x - a is divided by x - a

  • By: Admin
  • We have to divide 3x3 + 7by 7 + 3x. If remainder comes out to be 0 then 7 + 3x will be a factor of 3x3 + 7x.
    By Long Division,

    As remainder is not zero so 7 + 3x is not a factor of 3x3 + 7x.

  • By: Admin
  • Determine which of the following polynomials has (x + 1) a factor:
    (i) x3 + x2 + x + 1

    (ii) x4 + x3 + x2 + x + 1
    (iii) x4 + 3x3 + 3x2 + x + 1 

    (iv) x3 - x2 - (2 + √2)x + √2

    Answer

    (i) If (x + 1) is a factor of p(x) = x3 + x2 + x + 1, p(-1) must be zero. 
    Here, p(x) = x3 + x2 + x + 1 
    p(-1) = (-1)3 + (-1)2 + (-1) + 1 
    = -1 + 1 - 1 + 1 = 0
    Therefore, x + 1 is a factor of this polynomial

    (ii) If (x + 1) is a factor of p(x) = x4 + x3 + x2 + x + 1, p(-1) must be zero. 
    Here, p(x) = x4 + x3 + x2 + x + 1 
    p(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
    = 1 - 1 + 1 - 1 + 1 = 1

    As, p(-1) ≠ 0
    Therefore, x + 1 is not a factor of this polynomial

    (iii)If (x + 1) is a factor of polynomial p(x) = x4 + 3x3 + 3x2 + x + 1, p(- 1) must be 0. 
    p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
    = 1 - 3 + 3 - 1 + 1 = 1
    As, p(-1) ≠ 0
    Therefore, x + 1 is not a factor of this polynomial.

     

    (iv) If (x + 1) is a factor of polynomial

    p(x) = x3 - x2 - (2 + √2)x + √2, p(- 1) must be 0.

    p(-1) =  (-1)3 -  (-1)2 -  (2 + √2) (-1) + √2
    = -1 - 1 + 2 + √2 + √2
    =2√2
    As, p(-1) ≠ 0
    Therefore,, x + 1 is not a factor of this polynomial.

  • By: Admin
  • Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
    (i) p(x) = 2x3 + x2 - 2x - 1, g(x) = x + 1
    (ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
    (iii) p(x) = x3 - 4 x2 + x + 6, g(x) = x - 3

    Answer

    (i) If g(x) = x + 1 is a factor of given polynomial p(x), p(- 1) must be zero.
    p(x) = 2x3 + x2 - 2x - 1
    p(- 1) = 2(-1)3 + (-1)2 - 2(-1) - 1
    = 2(- 1) + 1 + 2 - 1 = 0
    Hence, g(x) = x + 1 is a factor of given polynomial.

    (ii) If g(x) = x + 2 is a factor of given polynomial p(x), p(- 2) must be 0.
    p(x) = x3 +3x2 + 3x + 1
    p(-2) = (-2)3 + 3(- 2)2 + 3(- 2) + 1
    = -8 + 12 - 6 + 1
    = -1

    As, p(-2) ≠ 0

    Hence g(x) = x + 2 is not a factor of given polynomial.


    (iii) If g(x) = x - 3 is a factor of given polynomial p(x), p(3) must be 0.
    p(x) = x3 - 4x2 + x + 6
    p(3) = (3)3 - 4(3)2 + 3 + 6
    = 27 - 36 + 9 = 0
    Therefore,, g(x) = x - 3 is a factor of given polynomial.

  • By: Admin
  • Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:(i) p(x) = x2 + x + k
    (ii) p(x) = 2x2 + kx +  √2
    (iii) p(x) = kx2 - √2x + 1
    (iv) p(x) = kx2 - 3x + k

    Answer

    (i) If x - 1 is a factor of polynomial p(x) = x2 + x + k, then

    p(1) = 0
    ⇒ (1)2 + 1 + k = 0
    ⇒ 2 + k = 0
    ⇒ k = - 2

    Therefore, value of k is -2.


    (ii) If x - 1 is a factor of polynomial p(x) = 2x2 + kx +  √2, then
    p(1) = 0
    ⇒ 2(1)2 + k(1) + √2 = 0
    ⇒ 2 + k + √2 = 0
    ⇒ k = -2 - √2 = -(2 + √2)

    Therefore, value of k is -(2 + √2).


    (iii) If x - 1 is a factor of polynomial p(x) = kx2 - √2x + 1, then
    p(1) = 0
    ⇒ k(1)2 - √2(1) + 1 = 0
    ⇒ k - √2 + 1 = 0
    ⇒ k = √2 - 1

    Therefore, value of k is √2 - 1.


    (iv) If x - 1 is a factor of polynomial p(x) = kx2 - 3x + k, then
    p(1) = 0
    ⇒ k(1)2 + 3(1) + k = 0
    ⇒ k - 3 + k = 0
    ⇒ 2k - 3 = 0
    ⇒ k = 3/2

    Therefore, value of k is 3/2.

  • By: Admin
  • Factorise:
    (i) 12x2 + 7x + 1
    (ii) 2x2 + 7x + 3
    (iii) 6x2 + 5x - 6
    (iv) 3x2 - x - 4 

    Answer

    (i) 12x2 + 7x + 1
    = 12x2 - 4x - 3x+ 1                   
    = 4x (3x - 1) - 1 (3x - 1)
    = (3x - 1) (4x - 1)

    (ii) 2x2 + 7x + 3
    = 2x2 + 6x + + 3
    = 2x (x + 3) + 1 (x + 3)
    =  (x + 3) (2+ 1) 

    (iii) 6x2 + 5x - 6
    = 6x2 + 9- 4x - 6

     = 3x (2x + 3) - 2 (2x + 3)
    = (2x + 3) (3x - 2)


    (iv) 3x2 - x - 4
    = 3x2 - 4+ 3x - 4 
    x (3x - 4) + 1 (3x - 4)
    = (3x - 4) (x + 1)

  • By: Admin
  • Use suitable identities to find the following products:
        (i) (x + 4) (x + 10)                     (ii) (x + 8) (x – 10)                      (iii) (3x + 4) (3x – 5)
        (iv) (y+ 3/2) (y- 3/2)             (v) (3 - 2x) (3 + 2x)

    Answer

    (i) Using identity, (+ a) (x + b) = x2 + (a + b) x + ab 
    In (x + 4) (x + 10), a = 4 and b = 10
    Now,
    (x + 4) (x + 10) = x2 + (4 + 10)x + (4 × 10)
                             = x2 + 14x + 40

    (ii) (x + 8) (x – 10)
    Using identity, (+ a) (x + b) = x2 + (a + b) x + ab
    Here, a = 8 and b = –10
    (x + 8) (x – 10) = x2 + {8 +(– 10)}x + {8×(– 10)}
                             = x2 + (8 – 10)x – 80
                             = x2 – 2x – 80

    (iii) (3x + 4) (3x – 5)
    Using identity, (+ a) (x + b) = x2 + (a + b) x + ab
    Here, x = 3x , a = 4 and b = -5
    (3x + 4) (3x – 5) = (3x2 + {4 + (-5)}3x + {4×(-5)}
                               = 9x2 + 3x(4 - 5) - 20
                               = 9x2 - 3x - 20

    (iv) (y+ 3/2) (y- 3/2)
    Using identity, (+ y) (x -y) = x2 - y2
    Here, x = y2 and y = 3/2
    (y+ 3/2) (y- 3/2) = (y2)- (3/2)2
                                             y4 - 9/4

    (v) (3 - 2x) (3 + 2x)
    Using identity, (+ y) (x -y) = x2 - y2
    Here, x = 3 and y = 2x
    (3 - 2x) (3 + 2x) = 32 - (2x)2
                                       =  9 - 4x2

  • By: Admin
  •  Evaluate the following products without multiplying directly:
        (i) 103 × 107               (ii) 95 × 96               (iii) 104 × 96


    Answer

    (i) 103 × 107 = (100 + 3) (100 + 7)
    Using identity, (+ a) (x + b) = x2 + (a + b) x + ab

    Here, x = 100, a = 3 and b = 7
    103 × 107 = (100 + 3) (100 + 7) = (100)2 + (3 + 7)10 + (3 × 7)
                     = 10000 + 100 + 21 
                     = 10121

    (ii) 95 × 96 = (90 + 5) (90 + 4)
    Using identity, (+ a) (x + b) = x2 + (a + b) x + ab 
    Here, x = 90, a = 5 and b = 4
    95 × 96 = (90 + 5) (90 + 4) = 902 + 90(5 + 6) + (5 × 6) 
                 = 8100 + (11 × 90) + 30
                 = 8100 + 990 + 30 = 9120


    (iii) 104 × 96 = (100 + 4) (100 - 4)
    Using identity, (+ y) (x -y) = x2 - y2
    Here, x = 100 and y = 4
    104 × 96 = (100 + 4) (100 - 4) = (100)2 - (4)= 10000 - 16 = 9984 

  • By: Admin
  • Factorise the following using appropriate identities:
       (i) 9x2 + 6xy + y2                 (ii) 4y2 - 4y + 1              (iii) xy2/100

    Answer

    (i) 9x2 + 6xy + y2  = (3x) 2 + (2×3x×y) + y2
    Using identity, (a + b)2 = a2 + 2ab + b2
    Here, a = 3x and b = y
    9x2 + 6xy + y2  = (3x) 2 + (2×3x×y) + y= (3x + y)= (3x + y) (3x + y)

    (ii) 4y2 - 4y + 1 = (2y)2 - (2×2y×1) + 12
    Using identity, (a - b)2 = a2 - 2ab + b2
    Here, a = 2y and b = 1
    4y2 - 4y + 1 = (2y)2 - (2×2y×1) + 1= (2y - 1)= (2y - 1) (2y - 1)

    (iii) x- y2/100 = x- (y/10)2
    Using identity, a2 - b2 = (a + b) (a - b)
    Here, a = x and b = (y/10)
    x- y2/100 = x- (y/10)= (x - y/10) (x + y/10)

  • By: Admin
  • Expand each of the following, using suitable identities:
        (i) (x + 2y + 4z)2                     (ii) (2x – y + z)2                    (iii) (–2x + 3y + 2z)2
        (iv) (3a – 7b – c)2                         (v) (–2x + 5y – 3z)2                   (vi) [1/4 a - 1/2 b + 1]2  

    Answer

    (i) (x + 2y + 4z)2
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = x, b = 2and c = 4z
    (x + 2y + 4z)x2 + (2y)2 + (4z)2 + (2×x×2y) + (2×2y×4z) + (2×4z×x)
                          = x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz

    (ii)  (2x – y + z)2
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = 2x, b = -and c = z
    (2x – y + z)= (2x)2 + (-y)2 + z2 + (2×2x×-y) + (2×-y×z) + (2×z×2x) 
                         = 4x2 + y2 + z2 - 4xy - 2yz + 4xz

    (iii) (–2x + 3y + 2z)2 
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = -2x, b = 3and c = 2z
    (–2x + 3y + 2z)(-2x)2 + (3y)2 + (2z)2 + (2×-2x×3y) + (2×3y×2z) + (2×2z×-2x) 
                         = 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8xz

    (iv) (3a – 7b – c)2
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = 3a, b = -7b and c = -c
    (3a – 7b – c)2 (3a)2 + (-7b)2 + (-c)2 + (2×3a×-7b) + (2×-7b×-c) + (2×-c×3a) 
                         = 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac

    (v) (–2x + 5y – 3z)2  
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = -2x, b = 5y and c = -3z
    (–2x + 5y – 3z)2 (-2x)2 + (5y)2 + (-3z)2 + (2×-2x×5y) + (2×5y×-3z) + (2×-3z×-2x) 
                         = 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12xz

    (vi) [1/4 a - 1/2 b + 1]2 
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca  
    Here, a = 1/4 a, b = -1/2 b and c = 1
    [1/4 a - 1/2 b + 1]2 (1/4 a)2 + (-1/2 b)2 + 12 + (2×1/4 a×-1/2 b) + (2×-1/2 b×1) + (2×1×1/4 a) 
                                    = 1/16 a2 + 1/4 b2 + 1 - 1/4 ab - b + 1/2 a

  • By: Admin
  • Factorise:
    (i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
    (ii) 2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz - 8xz

    Answer

    (i) 4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca 
    4x2 + 9y2 + 16z2 + 12xy - 24yz - 16xz
    = (2x)2 + (3y)2 + (-4z)2 + (2×2x×3y) + (2×3y×-4z) + (2×-4z×2x)
    = (2x + 3y - 4z)2
     (2x + 3y - 4z) (2x + 3y - 4z)

    (ii) 2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz - 8xz
    Using identity, (a + b + c)= a2 + b2 + c2 + 2ab + 2bc + 2ca
    2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz - 8xz 
    = (-√2x)2 + (y)2 + (2√2z)2 + (2×-√2x×y) + (2×y×2√2z) + (2×2√2z×-√2x)
    (-√2x + y + 2√2z)2
     (-√2x + y + 2√2z) (-√2x + y + 2√2z)

  • By: Admin
  • Write the following cubes in expanded form:
        (i) (2x + 1)3                 (ii) (2a – 3b)3                (iii) [3/2 x + 1]3           (iv) [x - 2/3 y]3 

    Answer

    (i) (2x + 1)3
    Using identity, (a + b)= a3 + b3 + 3ab(a + b)
    (2x + 1)= (2x)3 + 13 + (3×2x×1)(2x + 1)
    = 8x3 + 1 + 6x(2x + 1)
    8x3 + 12x2 + 6x + 1

    (ii) (2a – 3b)3
    Using identity, (a - b)= a3 - b3 - 3ab(a - b) 
    (2a – 3b)= (2a)3 - (3b)3 - (3×2a×3b)(2a - 3b)
    = 8a3 - 27b3 - 18ab(2a - 3b)
    8a3 - 27b3 - 36a2b + 54ab2

    (iii) [3/2 x + 1]3 
    Using identity, (a + b)= a3 + b3 + 3ab(a + b)
    [3/2 x + 1]= (3/2 x)3 + 13 + (3×3/2 x×1)(3/2 x + 1)
    = 27/8 x+ 1 + 9/2 x(3/2 x + 1)
    27/8 x+ 1 + 27/4 x2 + 9/2 x
    27/8 x+ 27/4 x2 + 9/2 x + 1

    (iv) [x - 2/3 y]3
    Using identity, (a - b)= a3 - b3 - 3ab(a - b)
    [x - 2/3 y]3 = (x)3 - (2/3 y)3 - (3×x×2/3 y)(x - 2/3 y)
    = x3 - 8/27y3 - 2xy(x - 2/3 y)
    x3 - 8/27y3 - 2x2y + 4/3xy2

  • By: Admin
  • Evaluate the following using suitable identities: 
        (i) (99)3            (ii) (102)3             (iii) (998)3  

    Answer

    (i) (99)3 = (100 - 1)3
    Using identity, (a - b)= a3 - b3 - 3ab(a - b) 
    (100 - 1)= (100)3 - 13 - (3×100×1)(100 - 1)
    = 1000000 - 1 - 300(100 - 1)
    = 1000000 - 1 - 30000 + 300
    = 970299

    (ii) (102)3 = (100 + 2)3
    Using identity, (a + b)= a3 + b3 + 3ab(a + b)
    (100 + 2)= (100)3 + 23 + (3×100×2)(100 + 2)
    = 1000000 + 8 + 600(100 + 2)
    = 1000000 + 8 + 60000 + 1200
    = 1061208

    (iii) (998)3 
    Using identity, (a - b)= a3 - b3 - 3ab(a - b) 
    (1000 - 2)= (1000)3 - 23 - (3×1000×2)(1000 - 2)
    = 100000000 - 8 - 6000(1000 - 2)
    = 100000000 - 8- 600000 + 12000
    = 994011992

  • By: Admin
  • Factorise each of the following: 
    (i) 8a3 + b3 + 12a2b + 6ab2                           (ii) 8a3 - b3 - 12a2b + 6ab2
    (iii) 27 - 125a3 - 135a + 225a2                      (iv) 64a3 - 27b3 - 144a2b + 108ab2
    (v) 27p3 - 1/216 - 9/2 p2 + 1/4 p

    Answer


    (i) 8a3 + b3 + 12a2b + 6ab2
    Using identity, (a + b)= a3 + b3 + 3a2b + 3ab2
    8a3 + b3 + 12a2b + 6ab2 
    = (2a)3 + b3 + 3(2a)2b + 3(2a)(b)2
    = (2a + b)3
    = (2a + b)(2a + b)(2a + b)

    (ii) 8a3 - b3 - 12a2b + 6ab2
    Using identity, (a - b)= a3 - b3 - 3a2b + 3ab2
    8a3 - b3 - 12a2b + 6ab2= (2a)3 - b3 - 3(2a)2b + 3(2a)(b)2
    = (2a - b)3
    = (2a - b)(2a - b)(2a - b)

    (iii) 27 - 125a3 - 135a + 225a2
    Using identity, (a - b)= a3 - b3 - 3a2b + 3ab2
    27 - 125a3 - 135a + 225a2= 33 - (5a)3 - 3(3)2(5a) + 3(3)(5a)2
    = (3 - 5a)3
    (3 - 5a)(3 - 5a)(3 - 5a)

    (iv) 64a3 - 27b3 - 144a2b + 108ab2
    Using identity, (a - b)= a3 - b3 - 3a2b + 3ab2
    64a3 - 27b3 - 144a2b + 108ab2= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a)(3b)2
    = (4a - 3b)3
    = (4a - 3b)(4a - 3b)(4a - 3b)

    (v) 27p3 - 1/216 - 9/2 p2 + 1/4 p 

     Using identity, (a - b)= a3 - b3 - 3a2b + 3ab2
     27p3 - 1/216 - 9/2 p2 + 1/4 p
    (3p)3 - (1/6)3 - 3(3p)2(1/6) + 3(3p)(1/6)2
    = (3p - 1/6)3
    = (3p - 1/6)(3p - 1/6)(3p - 1/6)

  • By: Admin
  • Verify : (i) x3 + y3 = (x + y) (x2 - xy + y2)             (ii) x3 - y3 = (x - y) (x2 + xy + y2)

    Answer

    (i) x3 + y3 = (x + y) (x2 - xy + y2)
    We know that, 
    (x + y)= x3 + y3 + 3xy(x + y) 
    ⇒ x3 + y= (x + y)- 3xy(x + y)
    ⇒ x3 + y= (x + y)[(x + y)2 - 3xy]                  {Taking (x+y) common}
    ⇒ x3 + y= (x + y)[(x2 + y+ 2xy) - 3xy] 
    ⇒ x3 + y= (x + y)(x2 + y- xy) 

    (ii) x3 - y3 = (x - y) (x2 + xy + y2 )
    We know that, 
    (x - y)= x3 - y3 - 3xy(x - y) 
    ⇒ x3 - y= (x - y)+ 3xy(x - y)
    ⇒ x3 + y= (x - y)[(x - y)2 + 3xy]                     {Taking (x-y) common}
    ⇒ x3 + y= (x - y)[(x2 + y- 2xy) + 3xy] 
    ⇒ x3 + y= (x + y)(x2 + y+ xy)

  • By: Admin
  • Factorise each of the following:
          (i) 27y3 + 125z3                     (ii) 64m3 - 343n3

    Answer

    (i) 27y3 + 125z3
    Using identity, x3 + y3 = (x + y) (x2 - xy + y2)
    27y3 + 125z3 = (3y)3 + (5z)3
    (3y + 5z) {(3y)2 - (3y)(5z) + (5z)2}
    = (3y + 5z) (9y2 - 15yz + 25z)2 

    (ii) 64m3 - 343n3 
    Using identity, x3 - y3 = (x - y) (x2 + xy + y2 ) 
    64m3 - 343n3 = (4m)3 - (7n)3
    (4m + 7n) {(4m)2 + (4m)(7n) + (7n)2}
    = (4m + 7n) (16m2 + 28mn + 49n)2 

  • By: Admin
  • Factorise : 27x3 + y3 + z3 - 9xyz

    Answer

    27x3 + y3 + z3 - 9xyz = (3x)3 + y3 + z3 - 3×3xyz
    Using identity, x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
    27x3 + y3 + z3 - 9xyz
    (3x + y + z) {(3x)2 + y2 + z2 - 3xy - yz - 3xz}
    (3x + y + z) (9x2 + y2 + z2 - 3xy - yz - 3xz)

  • By: Admin
  • Verify that: x3 + y3 + z3 - 3xyz = 1/2(x + y + z) [(x - y)+ (y - z)+ (z - x)2]

    Answer

    We know that,
    x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
     x3 + y3 + z3 - 3xyz = 1/2×(x + y + z) 2(x2 + y2 + z2 - xy - yz - xz)
    = 1/2(x + y + z) (2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz) 
    1/2(x + y + z) [(x2 + y2 -2xy) + (y+ z2 - 2yz) + (x2 + z- 2xz)] 
    = 1/2(x + y + z) [(x - y)+ (y - z)+ (z - x)2]

  • By: Admin
  • If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.

    Answer

    We know that,
    x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
    Now put (x + y + z) = 0,  
    x3 + y3 + z3 - 3xyz = (0)(x2 + y2 + z2 - xy - yz - xz) 
    ⇒ x3 + y3 + z3 - 3xyz = 0

  • By: Admin
  • Without actually calculating the cubes, find the value of each of the following:
         (i) (-12)3 + (7)3 + (5)3
         (ii) (28)3 + (–15)3 + (-13)3

    Answer

    (i) (-12)3 + (7)3 + (5)3
     Let x = -12, y = 7 and z = 5
    We observed that, x + y + z = -12 + 7 + 5 = 0

    We know that if,
    x + y + z = 0, then x3 + y3 + z3 = 3xyz
    (-12)3 + (7)3 + (5)3 = 3(-12)(7)(5) = -1260

    (ii) (28)3 + (–15)3 + (-13)3
     Let x = 28, y = -15 and z = -13
    We observed that, x + y + z = 28 - 15 - 13 = 0

    We know that if,
    x + y + z = 0, then x3 + y3 + z3 = 3xyz
    (28)3 + (–15)3 + (-13)3 = 3(28)(-15)(-13) = 16380

  • By: Admin
  • Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given: 
    (i) Area : 25a2 - 35a + 12
    (ii) Area : 35 y2 + 13y - 12

    Answer


    (i) Area : 25a2 - 35a + 12

    Since, area is product of length and breadth therefore by factorizing the given area, we can know the length and breadth of rectangle.
    25a2 - 35a + 12
    25a2 - 15a -20a + 12
    = 5a(5a - 3) - 4(5a - 3)
    (5a - 4)(5a - 3)
    Possible expression for length = 5a - 4
    Possible expression for breadth = 5a - 3

    (ii) Area : 35 y2 + 13y - 12
    35 y2 + 13y - 12
    35y2 - 15y + 28y - 12
    = 5y(7y - 3) + 4(7y - 3)
    (5y + 4)(7y - 3)
    Possible expression for length = (5y + 4)
    Possible expression for breadth (7y - 3)

  • By: Admin
  • What are the possible expressions for the dimensions of the cuboids whose volumes are given below? (i) Volume : 3x2 - 12x
    (ii) Volume : 12ky2 + 8ky - 20k

    Answer

    (i) Volume : 3x2 - 12
    Since, volume is product of length, breadth and height therefore by factorizing the given volume, we can know the length, breadth and height of the cuboid. 
    3x2 - 12x
    = 3x(x - 4)
    Possible expression for length = 3
    Possible expression for breadth x
    Possible expression for height (x - 4)

    (ii) Volume : 12ky2 + 8ky - 20k 
    Since, volume is product of length, breadth and height therefore by factorizing the given volume, we can know the length, breadth and height of the cuboid. 
    12ky2 + 8ky - 20k
    = 4k(3y2 + 2y - 5)
    = 4k(3y2 +5y - 3y - 5)
    4k[y(3y +5) - 1(3y + 5)]
    4k (3y +5) (y - 1)
    Possible expression for length = 4k
    Possible expression for breadth (3y +5)
    Possible expression for height (y - 1)

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.