Surface Areas and Volumes CBSE Notes, Lectures

CBSE - Surface Areas and Volumes

  • By: Admin
  • Answer

    1. Length of plastic box = 1.5 m
    Width of plastic box = 1.25 m
    Depth of plastic box = 1.25 m
    (i) The area of sheet required to make the box is equal to the surface area of the box excluding the top.
    Surface area of the box = Lateral surface area + Area of the base
    = 2(l+b)×h + (l×b)
    = 2[(1.5 + 1.25)×1.25] + (1.5 × 1.25) m
                                                  = (3.575 + 1.875) m
    = 5.45 m
    The sheet required required to make the box is 5.45 m
    (ii) Cost of 1 mof sheet = Rs 20
    ∴ Cost of 5.45 mof sheet = Rs (20 × 5.45) = Rs 109

    2. The length, breadth and height of a room are 5m, 4m and 3m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of rs 7.50 per m2.

  • By: Admin
  • Answer

    length of the room = 5m
    breadth of the room = 4m
    height of the room = 3m
    Area of four walls including the ceiling = 2(l+b)×h + (l×b)
    = 2(5+4)×3 + (5×4) m
     = (54 + 20) m
    = 74 mCost of white washing = ���7.50 per m2
    Total cost = rs (74×7.50) = rs 555

  • By: Admin
  • Answer

    Perimeter of rectangular hall = 2(l + b) = 250 m
    Total cost of painting = ���15000
    Rate per m= rs10
    Area of four walls = 2(l + b) h m= (250×h) m2
    A/q,
    (250×h)×10 = rs15000
    ⇒ 2500×h = rs15000
    ⇒ h = 15000/2500 m
    ⇒ h = 6 m
    Thus the height of the hall is 6 m.

  • By: Admin
  • Answer

    Volume of paint = 9.375 m= 93750 cm2
    Dimension of brick = 22.5 cm×10 cm×7.5 cm
    Total surface area of a brick = 2(lb + bh + lh) cm2
    = 2(22.5×10 + 10×7.5 + 22.5×7.5) cm2
    = 2(225 + 75 + 168.75) cm2
    = 2×468.75 cm2 = 937.5 cm2
    Number of bricks can be painted = 93750/937.5 = 100

  • By: Admin
  • (i) Lateral surface area of cubical box of edge 10cm = 4×102 cm2 = 400 cm2
    Lateral surface area of cuboid box = 2(l+b)×h
    = 2×(12.5+10)×8 cm2
    = 2×22.5×8 cm2 = 360 cm2
    Thus, lateral surface area of the cubical box is greater by (400 – 360) cm2 = 40 cm2

    (ii) Total surface area of cubical box of edge 10 cm =6×102cm2=600cm2
    Total surface area of cuboidal box = 2(lb + bh + lh)
    = 2(12.5×10 + 10×8 + 8×12.5)cm2
    = 2(125+80+100) cm2
    = (2×305) cm= 610 cm2
    Thus, total surface area of cubical box is smaller by 10 cm2

  • By: Admin
  • (i) Dimensions of greenhouse:
    l = 30 cm, b = 25 cm, h = 25 cm
    Total surface area of green house = 2(lb + bh + lh)
    = 2(30×25 + 25×25 + 25×30) cm2
    = 2(750 + 625 + 750) cm2
    = 4250 cm2
    (ii) Length of the tape needed = 4(l + b + h)
    = 4(30 + 25 + 25) cm
    = 4×80 cm = 320 cm

  • By: Admin
  • Dimension of bigger box = 25 cm × 20 cm × 5 cm
    Total surface area of bigger box = 2(lb + bh + lh)
    = 2(25×20 + 20×5 + 25×5) cm2
    = 2(500 + 100 + 125) cm2
    = 1450 cm2
    Dimension of smaller box = 15 cm × 12 cm × 5 cm
    Total surface area of smaller box = 2(lb + bh + lh)
    = 2(15×12 + 12×5 + 15×5) cm2
    = 2(180 + 60 + 75) cm2
    = 630 cm2
    Total surface area of 250 boxes of each type = 250(1450 + 630)cm2
    = 250×2080 cm= 520000 cm2
    Extra area required = 5/100(1450 + 630) × 250 cm= 26000 cm2

    Total Cardboard required = 520000 + 26000 cm2 = 546000 cm2
    Total cost of cardboard sheet = rs (546000 × 4)/1000 = rs 2184

  • By: Admin
  • Let r be the radius of the base and h = 14 cm be the height of the cylinder.
    Curved surface area of cylinder = 2πrh = 88 cm2
    ⇒ 2 × 22/7 × r × 14 = 88
    ⇒ r = 88/ (2 × 22/7 × 14)
    ⇒ r = 1 cm
    Thus, the diameter of the base = 2r = 2×1 = 2cm

  • By: Admin
  • Let r be the radius of the base and h be the height of the cylinder.
    Base diameter = 140 cm and Height (h) = 1m
    Radius of base (r) = 140/2 = 70 cm = 0.7 m
    Metal sheet required to make a closed cylindrical tank = 2πr(h + r)
    = (2 × 22/7 × 0.7) (1 + 0.7) m2
    = (2 × 22 × 0.1 × 1.7) m2
    =7.48 m2

  • By: Admin
  • Let R be external radius and r be the internal radius h be the length of the pipe.

    R  = 4.4/2 cm = 2.2 cm

    r = 4/2 cm = 2 cm
    h = 77 cm
    (i) Inner curved surface = 2πrh cm2
    = 2 × 22/7 × 2 × 77cm2
    = 968 cm2

    (ii) Outer curved surface = 2πRh cm2

    = 2 × 22/7 × 2.2 × 77 cm2
    = 1064.8 cm2

    (iii) Total surface area of a pipe = Inner curved surface area + outer curved surface area + areas of two bases

    = 2πrh + 2πRh + 2π(R2 – r2)
    = [968 + 1064.8 + (2 × 22/7) (4.84 – 4)] cm2
    = (2032.8 + 44/7 × 0.84) cm2
    = (2032.8 + 5.28) cm= 2038.08 cm2

  • By: Admin
  • The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m2.

    Answer

    Length of the roller (h) = 120 cm = 1.2 m
    Radius of the cylinder = 84/2 cm = 42 cm = 0.42 m
    Total no. of revolutions = 500
    Distance covered by roller in one revolution = Curved surface area = 2πrh
    = (2 × 22/7 × 0.42 × 1.2) m2
    = 3.168 m2
    Area of the playground = (500 × 3.168) m= 1584 m2

  • By: Admin
  • Radius of the pillar (r) = 50/2 cm = 25 cm = 0.25 m
    Height of the pillar (h) = 3.5 m.
    Rate of painting = rs12.50 per m2
    Curved surface = 2πrh
    = (2 × 22/7 × 0.25 × 3.5) m2
                                  =5.5 m2
    Total cost of painting = (5.5 × 12.5) = rs 68.75

  • By: Admin
  • Let r be the radius of the base and h be the height of the cylinder.
    Curved surface area = 2πrh = 4.4 m2
    ⇒ 2 × 22/7 × 0.7 × h = 4.4
    ⇒ h = 4.4/(2 × 22/7 × 0.7) = 1m
    ⇒ h = 1m

  • By: Admin
  • Radius of circular well (r) = 3.5/2 m = 1.75 m
    Depth of the well (h) = 10 m
    Rate of plastering = rs 40 per m2
    (i) Curved surface = 2πrh
    = (2 × 22/7 × 1.75 × 10) m2
    = 110 m2

    (ii) Cost of plastering = ���(110 × 40) = rs4400

  • By: Admin
  • Radius of the pipe (r) = 5/2 cm = 2.5 cm = 0.025 m
    Length of the pipe (h) = 28/2 m = 14 m
    Total radiating surface = Curved surface area of the pipe = 2πrh
    = (2 × 22/7 × 0.025 × 28) m2
                                                 = 4.4 m2

  • By: Admin
  • (i) Radius of the tank (r) = 4.2/2 m = 2.1 m
    Height of the tank (h) = 4.5 m
    Curved surface area = 2πrh m2
    = (2 × 22/7 × 2.1 × 4.5) m2
    = 59.4 m2
    (ii) Total surface area of the tank = 2πr(r + h) m2
    = [2 × 22/7 × 2.1 (2.1 + 4.5)] m2
    = 87.12 m2

    Let x be the actual steel used in making tank.
    ∴ (1 – 1/12) × x = 87.12
    ⇒ x = 87.12 × 12/11
    ⇒ x = 95.04 m2

  • By: Admin
  • Radius of the frame (r) = 20/2 cm = 10 cm
    Height of the frame (h) = 30 cm + 2×2.5 cm = 35 cm
    2.5 cm of margin will be added both side in the height.
    Cloth required for covering the lampshade = curved surface area = 2πrh
    = (2 × 22/7 × 10 × 35) cm2
    = 2200 cm2

  • By: Admin
  • Radius of the penholder (r) = 3cm
    Height of the penholder (h) = 10.5cm
    Cardboard required by 1 competitor = CSA of one penholder + area of the base
    = 2πrh + πr2
    = [(2 × 22/7 × 3 × 10.5) + 22/7 × 32] cm2
    = (198 + 198/7) cm2
    = 1584/7 cm2
    Cardboard required for 35 competitors = (35 × 1584/7) cm2
    = 7920 cm2

  • By: Admin
  • Radius (r) = 10.5/2 cm = 5.25 cm

    Slant height (l) = 10 cm

    Curved surface area of the cone = (πrl) cm2

    =(22/7 × 5.25 × 10) cm2

    =165 cm2

  • By: Admin
  • Radius (r) = 24/2 m = 12 m
    Slant height (l) = 21 m
    Total surface area of the cone = πr (l + r) m2
    = 22/7 × 12 × (21 + 12) m2
    = (22/7 × 12 × 33) m2
    = 1244.57 m2

  • By: Admin
  • (i) Curved surface of a cone = 308 cm2
    Slant height (l) = 14cm
    Let r be the radius of the base
    ∴ πr��� = 308
    ⇒ 22/7 × r × 14 = 308
    ⇒ r =308/(22/7 × 14) = 7 cm

    (ii) TSA of the cone = πr(l + r) cm2
    = 22/7 × 7 ×(14 + 7) cm2
    = (22 × 21) cm2
    = 462 cm2

  • By: Admin
  • Radius of the base (r) = 24 m
    Height of the conical tent (h) = 10 m
    Let l be the slant height of the cone.
    ∴ l= h+ r2
    ⇒ l = √h+ r2
    ⇒ l = √10+ 242
    ⇒ l = √100 + 576
    ⇒ l = 26 m
    (ii) Canvas required to make the conical tent = Curved surface of the cone
    Cost of 1 m2 canvas = rs70
    ∴ πrl = (22/7 × 24 × 26) m2 = 13728/7 m2
    ∴ Cost of canvas = rs 13728/7 × 70 = rs 137280

  • By: Admin
  • Radius of the base (r) = 6 m
    Height of the conical tent (h) = 8 m
    Let l be the slant height of the cone.
    ∴ l = √h+ r2
    ⇒ l = √8+ 62
    ⇒ l = √100
    ⇒ l = 10 m
    CSA of conical tent = πrl
    = (3.14 × 6 × 10) m2 = 188.4 m2
    Breadth of tarpaulin = 3 m
    Let length of tarpaulin sheet required be x.
    20 cm will be wasted in cutting.
    So, the length will be (x – 0.2 m)
    Breadth of tarpaulin = 3 m
    Area of sheet = CSA of tent
    [(x – 0.2 m) × 3] m = 188.4 m2
    ⇒ x – 0.2 m = 62.8 m
    ⇒ x = 63 m

  • By: Admin
  • Radius (r) = 14/2 m = 7 m
    Slant height tomb (l) = 25 m
    Curved surface area = πrl m2
    =(227×25×7) m2
    =550  m2
    Rate of white- washing = rs 210 per 100 m2
    Total cost of white-washing the tomb = rs (550 × 210/100) = rs1155

  • By: Admin
  • Radius of the cone (r) = 7 cm
    Height of the cone (h) = 24 cm
    Let l be the slant height
    ∴ l = √h+ r2
    ⇒ l = √24+ 72
    ⇒ l = √625
    ⇒ l = 25 m
    Sheet required for one cap = Curved surface of the cone
    = πrl cm2
    = (22/7 × 7 × 25) cm2
    = 550 cm2
    Sheet required for 10 caps = 550 × 10 cm= 5500 cm2

  • By: Admin
  • Radius of the cone (r) = 40/2 cm = 20 cm = 0.2 m
    Height of the cone (h) = 1 m
    Let l  be the slant height of a cone.
    ∴ l = √h+ r2
    ⇒ l = √1+ 0.22
    ⇒ l = √1.04
    ⇒ l = 1.02 m
    Rate of painting = rs12 per m2

    Curved surface of 1 cone = πrl m2
    = (3.14 × 0.2 × 1.02) m2
    = 0.64056 m2
    Curved surface of such 50 cones = (50 × 0.64056) m2
                                                                     = 32.028 m2
    Cost of painting all these cones = rs(32.028 × 12)
    = rs 384.34

  • By: Admin
  • (i) Radius of the sphere (r) = 10.5 cm
    Surface area = 4πr2
                        = (4 × 22/7 × 10.5 × 10.5) cm2
                        = 1386 cm2

    (ii) Radius of the sphere (r) = 5.6 cm
    Surface area = 4πr2
                         = (4 × 22/7 × 5.6 × 5.6) cm2
                         = 394.24 cm2

    (iii) Radius of the sphere (r) = 14 cm
    Surface area = 4πr2
                         = (4 × 22/7 × 14 × 14) cm2
                         = 2464 cm2

  • By: Admin
  • (i) Radius of the sphere (r) = 10.5 cm
    Surface area = 4πr2
                        = (4 × 22/7 × 10.5 × 10.5) cm2
                        = 1386 cm2

    (ii) Radius of the sphere (r) = 5.6 cm
    Surface area = 4πr2
                         = (4 × 22/7 × 5.6 × 5.6) cm2
                         = 394.24 cm2

    (iii) Radius of the sphere (r) = 14 cm
    Surface area = 4πr2
                         = (4 × 22/7 × 14 × 14) cm2
                         = 2464 cm2

  • By: Admin
  • r = 10 cm  
    Total surface area of hemisphere = 3πr2
                                                         = (3 × 3.14 × 10 ×10) cm2
                                                         = 942 cm2

  • By: Admin
  • Let r be the initial radius and R be the increased radius of balloons.
    r = 7cm and R = 14cm
    Ratio of the surface area =4πr2/4πR2
                                            = r2/R2
                                            = (7×7)/(14×14) = 1/4
    Thus, the ratio of surface areas = 1 : 4

  • By: Admin
  • Radius of the bowl (r) = 10.5/2 cm = 5.25 cm
    Curved surface area of the hemispherical bowl = 2πr2
                                                                            = (2 × 22/7 × 5.25 × 5.25) cm2
                                                               = 173.25 cm2
    Rate of tin - plating is = rs16 per 100 cm2
    Therefor, cost of 1 cm= rs16/100 
    Total cost of tin-plating the hemisphere bowl = 173.25 × 16/100
                                                                             = rs 27.72

  • By: Admin
  • Let r be the radius of the sphere.
    Surface area = 154 cm2
    ⇒ 4πr= 154
    ⇒ 4 × 22/7 × r= 154
    ⇒ r= 154/(4 × 22/7)
    ⇒ r= 49/4
    ⇒ r = 7/2 = 3.5 cm

  • By: Admin
  • Let the diameter of earth be r and that of the moon will be r/4
    Radius of the earth = r/2
    Radius of the moon = r/8
    Ratio of their surface area = 4π(r/8)2/4π(r/2)2
                                                        = (1/64)/(1/4)
                                              = 4/64 = 1/16
    Thus, the ratio of their surface areas is 1:16

  • By: Admin
  • Inner radius of the bowl (r) = 5 cm
    Thickness of the steel = 0.25 cm
    ∴ outer radius (R) = (r + 0.25) cm
                                  = (5 + 0.25) cm  = 5.25 cm
    Outer curved surface = 2πR2
                                      = (2 × 22/7 × 5.25 × 5.25) cm2
                                      = 173.25 cm2

  • By: Admin
  • (i) The surface area of the sphere with raius r = 4πr2

    (ii) The right circular cylinder just encloses a sphere of radius r.
    ∴ the radius of the cylinder = r and its height = 2r
    ∴ Curved surface of cylinder =2πrh
                                                   = 2π × r × 2r
                                                   = 4πr2
    (iii) Ratio of the areas = 4πr2:4πr2 = 1:1

  • By: Admin
  • Dimension of matchbox = 4cm × 2.5cm × 1.5cm
    l = 4 cm, b = 2.5 cm and h = 1.5 cm
    Volume of one matchbox = (l × b × h)
                                             = (4 × 2.5 × 1.5)  cm= 15 cm3
    Volume of a packet containing 12 such boxes = (12 × 15)  cm= 180 cm3

  • By: Admin
  • Dimensions of water tank = 6m x  5m x 4.5m
    l = 6m , b = 5m and h = 4.5m
    Therefore Volume of the tank =lbh m3
     =(6 x 5 x 4.5)m3=135 m3
    Therefore , the tank can hold = 135 x 1000 litres[Since 1m3=1000litres]
    = 135000 litres of water.

  • By: Admin
  • Length = 10 m , Breadth = 8 m and Volume = 380 m3
    Volume of cuboid = Length × Breadth × Height
    ⇒ Height = Volume of cuboid/(Length × Breadth) 
    = 380/(10×8) m
    = 4.75m

  • By: Admin
  • l = 8 m, b = 6 m and h = 3 m
    Volume of the pit = lbh m3
     = (8×6×3) m3
     = 144 m3
    Rate of digging = rs 30 per m3
    Total cost of digging the pit =  rs(144 × 30) =  rs 4320

  • By: Admin
  • length = 2.5 m, depth = 10 m and volume = 50000 litres
    1m3 = 1000 litres

    ∴ 50000 litres = 50000/1000 m3 = 50 m3
    Breadth = Volume of cuboid/(Length x Depth)
    = 50/(2.5 x 10) m
    = 2 m

  • By: Admin
  • Dimension of tank = 20m x 15m x 6m
    l = 20 m , b = 15 m and h = 6 m
    Capacity of the tank = lbh m3
    = (20 x 15 x 6) m3
    = 1800 m3
    Water requirement per person per day =150 litres
    Water required for 4000 person per day = (4000 x 150) l
                                                                    = (4000 x 150) / 1000
                                                                    = 600 m3
    Number of days the water will last = Capacity of tank Total water required per day
                                                            =(1800/600) = 3
    The water will last for 3 days.

  • By: Admin
  • Dimension of godown = 40 m x 25 m x 15 m
    Volume of the godown = (40 x 25 x 15) m3 = 10000 m3
    Dimension of crates = 1.5m x 1.25m x 0.5m 
    Volume of 1 crates = (1.5 x 1.25 x 0.5) m3 = 0.9375 m3
    Number of crates that can be stored =Volume of the godown/Volume of 1 crate
    = 10000/0.9375 = 10666.66 = 10666

  • By: Admin
  • Edge of the cube = 12 cm. 
    Volume of the cube = (edge)3 cm3
    = (12 x 12 x 12) cm3
    = 1728 cm3 
    Number of smaller cube = 8
    Volume of the 1 smaller cube =1728/8 cm3 = 216 cm3
    Side of the smaller cube = a
    a= 216
    ⇒ a = 6 cm
    Surface area of the cube = 6 (side)2
    Ratio of their surface area = (6 x 12 x 12)/(6 x 6 x 6)
                                               = 4/1 = 4:1

  • By: Admin
  • Depth of river (h) = 3 m
    Width of river (b) = 40 m
    Rate of flow of water (l) = 2 km per hour = (2000/60) m per minute
    = 100/3 m per minute 
    Volume of water flowing into the sea in a minute = lbh m3
    = (100/3 x  40 x 3) m3
    = 4000 m3

  • By: Admin
  • Given; circumference = 132 cm, h = 25 cm
    Circumference = 2 π r
    Or, 132 = 2 πr
    Or, r = (132 X7)/(2 X 22) = 21 cm

    Volume of cylinder = π r2h
    = (22/7) X 212 X 25
    = 34650 cubic cm = 34650/1000 litre
    = 34.65 litre

  • By: Admin
  • Given; R = 28 cm, r = 24 cm, h = 35 cm
    Volume of pipe = π R2h – π r2h
    = π h (R2 - r2)
    = (22/7) X 35 (282 - 242)
    = 110 (28 + 24)(28 – 24)
    = 110 X 52 X 4 = 22880 cubic cm
    Mass = 22880 X 0.6 g = 13728 g

  • By: Admin
  • Rectangular can: l = 5 cm, b = 4 cm, h = 15 cm
    Volume of cubcoid = l X b X h
    = 5 X 4 X 15 = 300 cubic cm

    Cylindrical can: r = 35 cm, h = 10 cm
    Volume of cylinder = π r2 h
    = (22/7) X 352 X 10
    = 385 cubic cm
    Difference = 385 – 300 = 85 cubic cm

  • By: Admin
  • Given; curved surface area of cylinder = 94.2 sq cm, h = 5 cm
    CSA of cylinder = 2 π rh
    Or, 94.2 = 2 X (3.14) X r X 5
    Or, r = 94.2/(2 X 3.14 X 5) = 3 cm

    Now, volume of cylinder = π r2 h
    = 3.14 X 32 X 5 = 141.30 cubic cm

  • By: Admin
  • Cost = Rs. 2200, rate = Rs. 20 per sq m, h = 10 m
    Curved surface area = Cost/Rate
    = 2200/20 = 110 sq cm

    CSA of cylinder = 2 π rh
    Or, 110 = 2 X (22/7) X r X 10
    Or, r = (110 X 7)/(2 X 22 X 10) = 1.75 cm

    Now, volume of cylinder = π r2 h
    = (22/7) X (1.75)2 X 10 = 96.25 cubic m

  • By: Admin
  • Capacity = 15.4 litre = 15400 cubic cm, h = 1 m = 100 cm
    Volume of cylinder = π r2 h
    Or, 15400 = (22/7) X r2 X 100
    Or, r2 = (15400 X 7)/(22 X 100) = 49
    Or, r = 7 cm

    Now, total surface area of cylinder = 2 π r(r + h)
    = 2 X (22/7) X 7 (7 + 10)
    = 2 X 22 X 17 = 748 sq cm

  • By: Admin
  • Radius of pencil = 3.5 mm, h = 14 cm = 140 mm
    Volume of pencil = π r2h
    = (22/7) X (3.5)2 X 140 = 5390 cubic mm

    Radius of lead = 0.5 mm, h = 140 mm
    Volume of lead = π r2 h
    = (22/7) X (0.5)2 X 140 = 110 cubic mm
    Hence, volume of wood = 5390 – 110 = 5280 cubic mm

  • By: Admin
  • Given; r = 3.5 cm, h = 4 cm
    Volume of cylinder = π r2 h
    = (22/7) X (3.5)2 X 4 = 154 cubic cm
    Volume of 250 bowls = 250 X 154 = 38500 cubic cm = 38.5 litre

  • By: Admin
  • (i) radius 6 cm, height 7 cm

    Given; r = 6 cm, h = 7 cm
    Volume of cone = 1/3 π r2h
    = (1/3) X (22/7) X 62 X 7 = 264 cubic cm

    (ii) radius 3.5 cm, height 12 cm

     Given; r = 3.5 cm, h = 12 cm
    Volume of cone = 1/3 π r2 h
    = (1/3) X (22/7) X (3.5)2 X 12 = 154 cubic cm

  • By: Admin
  • (i) radius 7 cm, slant height 25 cm

    Answer: Given; r = 7 cm, l = 25 cm
    Here; h2 = l2 - r2
    = 252 - 72
    = 625 – 49 = 576
    Or, h = 24 cm

    Volume of cone = 1/3 π r2 h
    = (1/3) X (22/7) X 72 X 24 = 1232 cubic cm
    = 1.232 litre

    (ii) height 12 cm, slant height 13 cm

    Answer: Given; h = 12 cm, l = 13 cm
    Here, r2 = l2 - h2
    = 132 - 122
    = 169 – 144 = 25
    Or, r = 5 cm

    Volume of cone = 1/3 π r2 h
    = (1/3) X (3.14) X 52 X 12 = 314 cubic cm
    = 0.314 litre

  • By: Admin
  • Given; volume = 1570 cubic cm, h = 15 cm, r = ?
    Volume of cone = 1/3 π r2h
    Or, 1570 = (1/3) X (3.14) X r2 X 15
    Or, r2 = (1570 X 3)/(3.14 X 15) = 100
    Or, r = 10 cm

  • By: Admin
  • Given; volume = 48 π cubic cm, h = 9 cm, r = ?
    Volume of cone = 1/3 π r2 h
    Or, 48 π = 1/3 π r2 X 9
    Or, r2 = 48/3 = 16
    Or, r = 4 cm

  • By: Admin
  • Given; r = 3.5 m, h = 12 m
    Volume of cone = 1/3 π r2 h
    = (1/3) X (22/7) X (3.5)2 X 12 = 154 cubic cm
    = 154 kilo litre

  • By: Admin
  • Given; volume = 9856 cubic cm, d = 28 cm so, r = 14 cm
    Volume of cone = 1/3 π r2 h
    Or, 9856 = (1/3) X (22/7) X 142 X h
    Or, h = (9856 X 3 X 7)/(22 X 196) = 48 cm

    Slant Height:
    Here; l2 = h2 + r2
    = 482 + 142 = 2500
    Or, l = 50 cm

    Curved surface area of cone = π rl
    = (22/7) X 14 X 50 = 2200 sq cm

  • By: Admin
  • Given; h = 12 cm, r = 5 cm
    Volume of cone = 1/3 π r2 h
    = (1/3) π X 52 X 12 = 100 π cubic cm

  • By: Admin
  • (i) 7 cm

    Solution: Volume of sphere = 4/3 π r2
    = (4/3) X (22/7) X 73 = 1437.33 cubic cm

    (ii) 0.63 m

    Solution: Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X (0.63)3 = 1.047 cubic m

  • By: Admin
  • (i) 28 cm

    Solution: Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X 283 = 91989.33 cubic cm

    (ii) 0.21 m

    Solution: Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X (0.21)3 = 0.38808 cubic m

  • By: Admin
  • Solution: 

    Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X (4.2)3 = 310.464 cubic cm

    Mass = volume X density
    = 310.464 X 8.9
    = 2763.1296 gm = 2.76 kg

  • By: Admin
  • Solution: 

    Volume of two similar shapes are in triplicate ratio of their dimensions. For example; if radii are R and r then ratio of volumes = R3 : r3
    Hence, volume of earth/volume of moon
    = 43 : 13
    = 64 : 1

  • By: Admin
  • Solution: 

    Volume of hemisphere = 2/3 π r3
    = (2/3) X (22/7) X (5.25)3 = 303.1875 cubic cm = 0.303 litre

  • By: Admin
  • Solution: 

    Inner radius r = 1 m, outer radius r = 1.01 m
    Volume of metal = 4/3 π (R3 - r3)
    = (4/3) X (22/7) [(1.01)3 - 13]
    = (4/3) X (22/7) X 0.030301 = 0.06348 cubic m

  • By: Admin
  • Solution: 

    Surface area of sphere = 4 π r2
    Or, 154 = 4 X (22/7) X r2
    Or, r2 = (154 X 7)/(22 X 4) = 49/4
    Or, r = 7/2 = 3.5 cm

    Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X (3.5)3 = 179.67 cubic cm

  • By: Admin
  • Solution: 

    Curved surface area of hemisphere = cost/rate
    = 498.96/2 = 249.48 sq m
    Or, 2 π r2 = 249.48
    Or, r2 = (249.48 X 7)/(2 X 22)
    Or, r = 6.3 m

    Volume of hemisphere = 2/3 π r3
    = (2/3) X (22/7) X (6.3)3 = 523.908 cubic m

  • By: Admin
  • Solution: 

    Here; ratio of volumes = 27 : 1
    Radii shall be in sub-triplicate ratio, i.e. 3 : 1
    Because 33 : 13 = 27 : 1
    Now, surface areas shall be in duplicate ratio of radii
    Hence, ratio of surface areas = 32 : 12 = 9 : 1

  • By: Admin
  • Solution: 

    Volume of sphere = 4/3 π r3
    = (4/3) X (22/7) X (1.75)3
    = 22.46 cubic mm

  • By: Admin
  • Solution: 

    External height (l) of book self = 85 cm

    External breadth (b) of book self = 25 cm

    External height (h) of book self = 110 cm

    External surface area of shelf while leaving out the front face of the shelf

    lh + 2 (lb + bh)

    = [85 x 110 + 2 (85 x 25 + 25 x 110)] cm2

    = (9350 + 9750) cm2

    = 19100 cm2

    Area of front face = [85 x 110 - 75 x 100 + 2 (75 x 5)] cm2

    = 1850 + 750 cm2

    = 2600 cm2

    Area to be polished = (19100 + 2600) cm2 = 21700 cm2

    Cost of polishing 1 cm2 area = Rs 0.20

    Cost of polishing 21700 cm2 area Rs (21700 x 0.20) = Rs 4340

     

    It can be observed that length (l), breadth (b), and height (h) of each row of the book shelf is 75 cm, 20 cm, and 30 cm respectively.

    Area to be painted in 1 row = 2 (l + hb + lh

    = [2 (75 + 30) x 20 + 75 x 30] cm2

    = (4200 + 2250) cm2

    = 6450 cm2

    Area to be painted in 3 rows = (3 x 6450) cm2 = 19350 cm2

    Cost of painting 1 cm2 area = Rs 0.10

    Cost of painting 19350 cm2 area = Rs (19350 x 0.1)

    = Rs 1935

    Total expense required for polishing and painting = Rs (4340 + 1935)

    = Rs 6275

    Therefore, it will cost Rs 6275 for polishing and painting the surface of the bookshelf.

  • By: Admin
  • Solution: 

     

    Radius (r) of wooden sphere = 21/2 cm = 10.5 cm
    Surface area of wooden sphere = 4πr


    Radius (r1) of the circular end of cylindrical support = 1.5 cm

    Height (h) of cylindrical support = 7 cm

    CSA of cylindrical support = 2πrh

    = 7.07 cm2

    Area to be painted silver = [8 × (1386 - 7.07)] cm2

    = (8 × 1378.93) cm2 = 11031.44 cm2

    Cost for painting with silver colour = Rs (11031.44 × 0.25) = Rs 2757.86

    Area to be painted black = (8 × 66) cm2 = 528 cm2

    Cost for painting with black colour = Rs (528 × 0.05) = Rs 26.40

    Total cost in painting = Rs (2757.86 + 26.40)

    = Rs 2784.26

    Therefore, it will cost Rs 2784.26 in painting in such a way.

     

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.