A bus moving on a level ... -Eduinfy.com
MCQ Solution: Kinematics

A bus moving on a level road with a velocity $$V$$ can be stopped at a distance of $$x$$, by the application of a retarding force $$F$$. The load on the bus is increased by $$25\%$$ by boarding the passengers. Now, if the bus is moving with the same speed and if the same retarding force is applied, the distance travelled by the bus before it stops is:

1) x
2) 1.25x
3) 5x
4) 2.5x

 

Solution

Let the mass of the system be  $$m$$

Initial velocity of bus     $$u = V$$
Final velocity of bus      $$v = 0$$
Acceleration of the bus        $$a =- \dfrac{F}{m}$$
Using        $$v^2-u^2 = 2aS$$
$$\therefore$$     $$0-V^2  = 2 \times \bigg( \dfrac{-F}{m} \bigg) \times x$$         $$\implies$$    $$V^2  = \dfrac{2Fx}{m}$$           ...........(1)
 
Now the mass of the system is increased by $$25$$ %
$$\therefore$$ New mass of the system     $$M = 1.25 m$$
Acceleration of bus       $$a'  = -\dfrac{F}{1.25m}$$
Using        $$v^2-u^2 = 2a'x'$$
$$\therefore$$     $$0-V^2  = 2 \times \bigg( \dfrac{-F}{1.25m} \bigg) \times x'$$         $$\implies$$    $$V^2  = \dfrac{2Fx'}{1.25m}$$                   .....(2)    
 
From (1) and (2) we get     $$ \dfrac{2Fx'}{1.25m}$$  $$ = \dfrac{2Fx}{m}$$     
$$\implies  $$  $$x' = 1.25 x$$
NEET Question Bank
NEET MCQ Post





Latest Post
Optical Instruments
Equilibrium
Biological Classification
Introduction to Three Dimensional Geometry
Indefinite Integrals
JEE MCQ Post