NCERT Solution: Force and Laws of Motion
Mass of the dumbbell, m = 10 kg
Distance covered by the dumbbell, s = 80 cm = 0.8 m
Acceleration in the downward direction, a = 10 m/s2
Initial velocity of the dumbbell, u = 0
Final velocity of the dumbbell (when it was about to hit the floor) = v
According to the third equation of motion:
v2 = u2 + 2as
v2 = 0 + 2 (10) 0.8
v = 4 m/s
Hence, the momentum with which the dumbbell hits the floor is
= mv = 10 × 4 = 40 kg m s−1
Mass of the motor car = 1200 kg
Only two persons manage to push the car. Hence, the acceleration acquired by the car is given by the third person alone.
Acceleration produced by the car, when it is pushed by the third person,
a = 0.2 m/s2
Let the force applied by the third person be F.
From Newton’s second law of motion:
Force = Mass × Acceleration
F = 1200 × 0.2 = 240 N
Thus, the third person applies a force of magnitude 240 N.
Hence, each person applies a force of 240 N to push the motor car.
Mass of the hammer, m = 500 g = 0.5 kg
Initial velocity of the hammer, u = 50 m/s
Time taken by the nail to the stop the hammer, t = 0.01 s
Velocity of the hammer, v = 0 (since the hammer finally comes to rest)
From Newton’s second law of motion:
Force, f = m(v-u) / t
= 0.5(0-50) / 0.01
= -2500 N
The hammer strikes the nail with a force of −2500 N. Hence, from Newton’s third law of motion, the force of the nail on the hammer is equal and opposite, i.e., +2500 N.
Mass of the motor car, m = 1200 kg
Initial velocity of the motor car, u = 90 km/h = 25 m/s
Final velocity of the motor car, v = 18 km/h = 5 m/s
Time taken, t = 4 s
According to the first equation of motion:
v = u + at
5 = 25 + a (4)
a = − 5 m/s2
Negative sign indicates that its a retarding motion i.e. velocity is decreasing.
Change in momentum = mv − mu = m (v−u)
= 1200 (5 − 25) = − 24000 kg m s−1
Force = Mass × Acceleration
= 1200 × − 5 = − 6000 N
Acceleration of the motor car = − 5 m/s2
Change in momentum of the motor car = − 24000 kg m s−1
Hence, the force required to decrease the velocity is 6000 N.
(Negative sign indicates retardation, decrease in momentum and retarding force)
Time in seconds | Distance in metres |
0 | 0 |
1 | 1 |
2 | 8 |
3 | 27 |
4 | 64 |
5 | 125 |
6 | 216 |
7 | 343 |
(a) What conclusion can you draw about the acceleration? Is it constant,
increasing, decreasing, or zero?
(b)What do you infer about the forces acting on the object?
Answer
(a) There is an unequal change of distance in an equal interval of time.
Thus, the given object is having a non - uniform motion. Since the velocity of
the object increases with time, the acceleration is increasing.
(b) The object is in accelerated condition. According to Newton's second law of
motion, the force acting on an object is directly proportional to the
acceleration produced in the object. So, we can say unbalanced force is acting
on the object.
1. Which of the following statement is not correct for an object moving along a straight path in an accelerated motion?
(a) Its speed keeps changing
(b) Its velocity always changes
(c) It always goes away from the earth
(d) A force is always acting on it
Ans. (c) It always goes away from the earth
Explanation: To move away from the earth, an object needs the acceleration which is more than acceleration due to gravity. Only moving on a straight path is not enough for an object to escape the gravitation of the earth.
2. According to the third law of motion, action and reaction
(a) always act on the same body
(b) always act on different bodies in opposite directions
(c) have same magnitude and directions
(d) act on either body at normal to each other
Ans. (b) always act on different bodies in opposite directions
Explanation: Action and reaction act on different bodies but in opposite directions. They have the same magnitude.
3. A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goal keeper to
(a) exert larger force on the ball
(b) reduce the force exerted by the ball on hands
(c) increase the rate of change of momentum
(d) decrease the rate of change of momentum
Ans. (b) reduce the force exerted by the ball on hands
Explanation: Pulling the hand backwards allows enough time to reduce the momentum of the ball. This helps in reducing the force exerted by the ball on hands.
4. The inertia of an object tends to cause the object
(a) to increase its speed
(b) to decrease its speed
(c) to resist any change in its state of motion
(d) to decelerate due to friction
Ans. (c) to resist any change in its state of motion
Explanation: Inertia is the property because of which an object resists any change in its state of motion.
5. A passenger in a moving train tosses a coin which falls behind him. It means that motion of the train is
(a) accelerated
(b) uniform
(c) retarded
(d) along circular tracks
Ans. (a) accelerated
Explanation: Had the motions of the train been uniform, the coin would have fallen in his hand. Had the motion been retarded, the coin would have fallen ahead of him. So, motion is accelerated.
6. An object of mass 2 kg is sliding with a constant velocity of 4 ms–1 on a frictionless horizontal table. The force required to keep the object moving with the same
velocity is
(a) 32 N
(b) 0 N
(c) 2 N
(d) 8 N
Ans. (b) 0 N
Explanation: Since no friction is opposing the motion, hence no force is required to keep the object in uniform motion.
7. Rocket works on the principle of conservation of
(a) mass
(b) energy
(c) momentum
(d) velocity
Ans. (c) momentum
8. A water tanker filled up to 2/3 of its height is moving with a uniform speed. On sudden application of the brake, the water in the tank would
(a) move backward
(b) move forward
(c) be unaffected
(d) rise upwards
Ans. (b) move forward
Explanation: On sudden application of brake, the tanker would come to rest but water would remain in motion. Due to this, the water in the tank would move forward.
Steel- As the mass is a measure of inertia, the ball of same shape and size, having more mass than other balls will have highest inertia. Since steel has greatest density and greatest mass, therefore, it has highest inertia.
Yes. the balls will start rolling in the direction in which the train was moving. Due to the application of the brakes, the train comes to rest but due to inertia the balls try to remain in motion, therefore, they begin to roll. Since the masses of the balls are not the same, therefore, the inertial forces are not same on both the balls. Thus, the balls will move with different speeds.