NCERT Solution: Introduction to Trigonometry
Given that,
tan A = cot B
tan A = tan (90° − B)
A = 90° − B
A + B = 90°
Given that,
sec 4A = cosec (A − 20°)
cosec (90° − 4A) = cosec (A − 20°)
90° − 4A= A− 20°
110° = 5A
A = 22°
In a triangle, sum of all the interior angles
A + B + C = 180°
⇒ B + C = 180° - A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
⇒ sin (B+C)/2 = sin (90°-A/2)
⇒ sin (B+C)/2 = cos A/2
sin 67° + cos 75°
= sin (90° - 23°) + cos (90° - 15°)
= cos 23° + sin 15°
cosec2A - cot2A = 1
⇒ cosec2A = 1 + cot2A
⇒ 1/sin2A = 1 + cot2A
⇒sin2A = 1/(1+cot2A)
Now,
sin2A = 1/(1+cot2A)
⇒ 1 - cos2A = 1/(1+cot2A)
⇒cos2A = 1 - 1/(1+cot2A)
⇒cos2A = (1-1+cot2A)/(1+cot2A)
⇒ 1/sec2A = cot2A/(1+cot2A)
⇒ secA = (1+cot2A)/cot2A
also,
tan A = sin A/cos A and cot A = cos A/sin A
⇒ tan A = 1/cot A
We know that sec2A−tan2A=1
⇒tan2A=sec2A−1
⇒tan2A=sec2A−1
⇒tanA = √ sec2A−1−−−−−−−− (1)
We know that cos A = 1 / secA (2)
We know that sin2A+cos2A=1
⇒sin2A=1−cos2A
Putting (2) in the above equation we get
We know that cosecA=1/ sinA
Putting (3) in the above equation, we get
cosecA=secA / √ sec2A−1 (4)
We know that cotA=1 /tanA
Putting (1) in the above equation, we get
cotA=1 / √sec2A−1 (5)
(1), (2), (3), (4) and (5) shows all the other trigonometric ratios of ∠A in terms of sec A.
(i) (sin263° + sin227°)/(cos217° + cos273°)
= [sin2(90°-27°) + sin227°]/[cos2(90°-73°) + cos273°)]
= (cos227° + sin227°)/(sin227° + cos273°)
= 1/1 =1 (��� sin2A + cos2A = 1)
(ii) sin 25° cos 65° + cos 25° sin 65°
= sin(90°-25°) cos 65° + cos(90°-65°) sin 65°
= cos 65° cos 65° + sin 65° sin 65°
= cos265° + sin265° = 1
(i) (B) is correct.
9 sec2A - 9 tan2A
= 9 (sec2A - tan2A)
= 9×1 = 9 (��� sec2 A - tan2 A = 1)
(ii) (C) is correct
(1 + tan θ + sec θ) (1 + cot θ - cosec θ)
= (1 + sin θ/cos θ + 1/cos θ) (1 + cos θ/sin θ - 1/sin θ)
= (cos θ+sin θ+1)/cos θ × (sin θ+cos θ-1)/sin θ
= (cos θ+sin θ)2-12/(cos θ sin θ)
= (cos2θ + sin2θ + 2cos θ sin θ -1)/(cos θ sin θ)
= (1+ 2cos θ sin θ -1)/(cos θ sin θ)
= (2cos θ sin θ)/(cos θ sin θ) = 2
(iii) (D) is correct.
(secA + tanA) (1 - sinA)
= (1/cos A + sin A/cos A) (1 - sinA)
= (1+sin A/cos A) (1 - sinA)
= (1 - sin2A)/cos A
= cos2A/cos A = cos A
(iv) (D) is correct.
1+tan2A/1+cot2A
= (1+1/cot2A)/1+cot2A
= (cot2A+1/cot2A)×(1/1+cot2A)
= 1/cot2A = tan2A