NCERT Solution: Introduction to Trigonometry
(i)
If BC is k, then AB will be√3, where k is a positive integer.
In ΔABC,
AC2 = AB2 + BC2
⇒ tan (A + B) = tan 60°
⇒ tan (A - B) = tan 30°
⇒ (A - B) = 30° ... (ii)
(i) False.
Let A = 30° and B = 60°, then
sin (A + B) = sin (30° + 60°) = sin 90° = 1 and,
sin A + sin B = sin 30° + sin 60°
= 1/2 + √3/2 = 1+√3/2
(ii) True.
sin 0° = 0
sin 30° = 1/2
sin 45° = 1/√2
sin 60° = √3/2
sin 90° = 1
Thus the value of sin θ increases as θ increases.
(iii) False.
cos 0° = 1
cos 30° = √3/2
cos 45° = 1/√2
cos 60° = 1/2
cos 90° = 0
Thus the value of cos θ decreases as θ increases.
(iv) sin θ = cos θ for all values of θ.
This is true when θ = 45°
It is not true for all other values of θ.
Hence, the given statement is false.
(v) True.
cot A = cos A/sin A
cot 0° = cos 0°/sin 0° = 1/0 = undefined.
Evaluate :
(i) sin 18°/cos 72° (ii) tan 26°/cot 64° (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59°
(i) sin 18°/cos 72°
= sin (90° - 18°) /cos 72°
= cos 72° /cos 72° = 1
(ii) tan 26°/cot 64°
= tan (90° - 36°)/cot 64°
= cot 64°/cot 64° = 1
(iii) cos 48° - sin 42°
= cos (90° - 42°) - sin 42°
= sin 42° - sin 42° = 0
(iv) cosec 31° - sec 59°
= cosec (90° - 59°) - sec 59°
= sec 59° - sec 59° = 0
(i) tan 48° tan 23° tan 42° tan 67°
= tan (90° - 42°) tan (90° - 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1
(ii) cos 38° cos 52° - sin 38° sin 52°
= cos (90° - 52°) cos (90°-38°) - sin 38° sin 52°
= sin 52° sin 38° - sin 38° sin 52° = 0
Given that,
tan 2A = cot (A− 18°)
cot (90° − 2A) = cot (A −18°)
90° − 2A = A− 18°
108° = 3A
A = 36°