Coordinate Geometry Foundation CUET CBSE questions

CBSE - Coordinate Geometry

 

Coordinate Geometry 

The distance between the points (a cos 25°, 0) and (0, a cos 65°) is 

1) a
2) 2a
3) 3a
4) None of these

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 1

Solution :

-.

 

Coordinate Geometry 

The distance between the points (a cosθ + b sinθ, 0) and (0, a sinθ – b cosθ) is

1) a² + b²
2) a + b
3) a² – b² 
4) Ö(a²+b²)

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 4

Solution :

-.

 

Coordinate Geometry 

Determine the ratio in which the point P(m, 6) divides the join of A(-4, 3) and B(2, 8). Also find the value of m. 

1) 2 / 5
2) 3 / 5
3) -2 / 5
4) none

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 3

Solution :

-.

 

Coordinate Geometry 

The ratio in which the line 3x + y 9 = 0 divides the segment joining the points (1, 3) and (2, 7) is 

1) 1 : 1
2) 3 : 4
3) 1 : 3
4) 4 : 3

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 2

Solution :

-.

 

Coordinate Geometry 

If the points A (6, 1), B (8, 2), C(9, 4) and D (p, 3) are vertices of a parallelogram, taken in order, find the value of p

1) 5
2) 6
3) 7
4) 4

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 3

Solution :

-.

 

Coordinate Geometry 

Find the value of x, if the distance between the points (x, – 1) and (3, 2) is 5

1) -2
2) 4
3) -1
4) 2

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 3

Solution :

-.

 

Coordinate Geometry 

If (-1, 2), (2, -1) and (3, 1) are any three vertices of a parallelogram, then 

1) a = 2, b = 0
2) a = -2, b = 0
3) a = -2, b = 6
4) a = 0, b = 4

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 4

Solution :

-.

 

Coordinate Geometry 

Two vertices of a triangle are (3, –5) and (–7, 4). If its centroid is (2, –1). Find the third vertex.

1) (10, –2)
2) (10, 2)
3) (-2, 10)
4) (1, –2)

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 1

Solution :

-.

 

Coordinate Geometry 

Find the coordinates of the point which divides the line segment joining the points (6, 3) and (– 4, 5) in the ratio 3 : 2 internally.

1) (-2, 0)
2) (21/5, 0)
3) (1, 21/5)
4) (0, 21/5)

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 4

Solution :

-.

 

Coordinate Geometry 

If the distance between the points (4, p) and (1, 0) is 5, then p = 

1) ±4 
2) 4
3) -4
4) 0

 

A. Option 1
B. Option 2
C. Option 3
D. Option 4
 
 

Option: 1

Solution :

-.

Need more help?

To start up with Doubt classes and coaching with EDUINFY Tutors Feel free to contact us.

Want to upgrade?

Select the course you want to join . Contact us @9463337370 for subscription plan. you can directly contact Mentor for course Schedule and fees.
  • Course will start as per schedule.
  • Online and Classroom Mode available.
  • Flexible chapter and doubt session classes.