Coordinate Geometry
If (-1, 2), (2, -1) and (3, 1) are any three vertices of a parallelogram, then
1) a = 2, b = 0
2) a = -2, b = 0
3) a = -2, b = 6
4) a = 0, b = 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Coordinate Geometry
Two vertices of a triangle are (3, –5) and (–7, 4). If its centroid is (2, –1). Find the third vertex.
1) (10, –2)
2) (10, 2)
3) (-2, 10)
4) (1, –2)
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Coordinate Geometry
Determine the ratio in which the point P(m, 6) divides the join of A(-4, 3) and B(2, 8). Also find the value of m.
1) 2 / 5
2) 3 / 5
3) -2 / 5
4) none
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Coordinate Geometry
Find the coordinates of the point which divides the line segment joining the points (6, 3) and (– 4, 5) in the ratio 3 : 2 internally.
1) (-2, 0)
2) (21/5, 0)
3) (1, 21/5)
4) (0, 21/5)
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Coordinate Geometry
If the points A (6, 1), B (8, 2), C(9, 4) and D (p, 3) are vertices of a parallelogram, taken in order, find the value of p
1) 5
2) 6
3) 7
4) 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Coordinate Geometry
If the distance between the points (4, p) and (1, 0) is 5, then p =
1) ±4
2) 4
3) -4
4) 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Coordinate Geometry
The perimeter of the triangle formed by the points (0, 0), (1, 0) and (0, 1) is
1) 1 ± √2
2) √2 + 1
3) 3
4) 2 + √2
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Coordinate Geometry
The three vertices of a parallelogram are (1, 1), (4, 4) and (4, 8). Find the fourth vertex.
1) (-3 , 1)
2) (2 , -3)
3) (-2 , 3)
4) (1 , -3)
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Coordinate Geometry
The distance between the points (a cosθ + b sinθ, 0) and (0, a sinθ – b cosθ) is
1) a² + b²
2) a + b
3) a² – b²
4) Ö(a²+b²)
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |