Polynomials
If α, β are the zeros of the polynomial f(x) = x2 + x + 1, then =
1) 1
2) -1
3) 0
4) None of these
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, then
1) c = 0
2) c > 0
3) c < 0
4) None of these
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then
1) c and a have opposite signs
2) c and b have opposite signs
3) c and a have the same sign
4) c and b have the same sign
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If α and β are the zeroes of the polynomial f(x) = x2 – 5x + k such that α – β = 1, then value of k is:
(1) 8
(2) 6
(3) 13 / 2
(4) 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If α, β are the zeros of polynomial f(x) = x2 – p (x + 1) – c, then (α + 1) (β + 1) =
(a) c – 1
(b) 1 – c
(c) c
(d) 1 + c
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
On dividing f(x) = x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 and – 2x + 4, respectively. Find g(x)..
1) x2 – x + 1
2) x2 + x + 1
3) x2 – x – 1
4) x3 – x2 + x + 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is -1, then the product of other two zeroes is
1) b – a + 1
2) b – a – 1
3) a – b + 1
4) a – b – 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If a and b are the roots (zeros) of the polynomial f(x) = x2 – 3x + k such that α – β= 1, find the value of k.
1) 1
2) 4
3) 2
4) 5
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |