Polynomials
If a and b are the roots (zeros) of the polynomial f(x) = x2 – 3x + k such that α – β= 1, find the value of k.
1) 1
2) 4
3) 2
4) 5
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
The zeroes of the quadratic polynomial x2 + 99x + 127 are
1) both positive
2) both negative
3) both equal
4) one positive and one negative
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
Given that two of the zeroes of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is
1) -b /a
2) b /a
3) c /a
4) -d /a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is -1, then the product of other two zeroes is
1) b – a + 1
2) b – a – 1
3) a – b + 1
4) a – b – 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If α and β are zeroes of the polynomial f(x)=x2+px+q then find the quadratic polynomial having 1/α and 1/β as its zeroes
1) 2
2) 1
3) -1
4) 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, then
1) c = 0
2) c > 0
3) c < 0
4) None of these
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If α, β are the zeros of polynomial f(x) = x2 – p (x + 1) – c, then (α + 1) (β + 1) =
(a) c – 1
(b) 1 – c
(c) c
(d) 1 + c
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If a and b are the zeros of the quadratic polynomial p(s) = 3s2 – 6s + 4, find the value of
is
1) 4
2) 8
3) 6
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |