Polynomials
On dividing f(x) = x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 and – 2x + 4, respectively. Find g(x)..
1) x2 – x + 1
2) x2 + x + 1
3) x2 – x – 1
4) x3 – x2 + x + 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If a and b are the zeroes of the polynomial x2-11x +30, Find the value of a3 + b3
1) 134
2) 412
3) 256
4) 341
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, then
1) c = 0
2) c > 0
3) c < 0
4) None of these
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If a and b are the roots (zeros) of the polynomial f(x) = x2 – 3x + k such that α – β= 1, find the value of k.
1) 1
2) 4
3) 2
4) 5
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If zeroes of the quadratic polynomial x2+(a+1)x+b are 2 and -3 then find the value of a and b
1) 0, 6
2) 1, -6
3) 0, -6
4) -6, 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If one of the zeroes of the quadratic polynomial (k-1)x2 + kx + 1 is -3,then the value of k is
1) -4/3
2) 4/3
3) 2/3
4) -2/3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
Given that two of the zeroes of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is
1) -b /a
2) b /a
3) c /a
4) -d /a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If α and β are the zeroes of the polynomial f(x) = x2 – 5x + k such that α – β = 1, then value of k is:
(1) 8
(2) 6
(3) 13 / 2
(4) 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |