Polynomials
If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then
1) c and a have opposite signs
2) c and b have opposite signs
3) c and a have the same sign
4) c and b have the same sign
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 3 Solution : -. |
Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 3 Solution : -. |
Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 3 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 3 Solution : -. |
Polynomials
The zeroes of the quadratic polynomial x2 + 99x + 127 are
1) both positive
2) both negative
3) both equal
4) one positive and one negative
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 2 Solution : -. |
Polynomials
If a and b are the zeroes of the polynomial x2-11x +30, Find the value of a3 + b3
1) 134
2) 412
3) 256
4) 341
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 4 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is -1, then the product of other two zeroes is
1) b – a + 1
2) b – a – 1
3) a – b + 1
4) a – b – 1
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 1 Solution : -. |
Polynomials
p(x) = x4 -6x3 +16x2 -25x +10
q(x) = x2-2x+k
It is given
p(x) = r(x) q(x) + (x+a)
Find the value of k and a
1) 2,-2
2) 5 ,-5
3) 7,3
4) 3,-1
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 2 Solution : -. |
Polynomials
On dividing f(x) = x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 and – 2x + 4, respectively. Find g(x)..
1) x2 – x + 1
2) x2 + x + 1
3) x2 – x – 1
4) x3 – x2 + x + 1
| A. | Option 1 |
| B. | Option 2 |
| C. | Option 3 |
| D. | Option 4 |
|
Option: 1 Solution : -. |