Polynomials
If α and β are zeroes of the polynomial f(x)=x2+px+q then find the quadratic polynomial having 1/α and 1/β as its zeroes
1) 2
2) 1
3) -1
4) 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
If α and β are the zeroes of the polynomial f(x) = x2 – 5x + k such that α – β = 1, then value of k is:
(1) 8
(2) 6
(3) 13 / 2
(4) 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
Given that two of the zeroes of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is
1) -b /a
2) b /a
3) c /a
4) -d /a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is -1, then the product of other two zeroes is
1) b – a + 1
2) b – a – 1
3) a – b + 1
4) a – b – 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If zeroes of the quadratic polynomial x2+(a+1)x+b are 2 and -3 then find the value of a and b
1) 0, 6
2) 1, -6
3) 0, -6
4) -6, 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If α, β are the zeros of the polynomial f(x) = x2 + x + 1, then =
1) 1
2) -1
3) 0
4) None of these
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then
1) c and a have opposite signs
2) c and b have opposite signs
3) c and a have the same sign
4) c and b have the same sign
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |