Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If one of the zeroes of the quadratic polynomial (k-1)x2 + kx + 1 is -3,then the value of k is
1) -4/3
2) 4/3
3) 2/3
4) -2/3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If a and b are the zeros of the quadratic polynomial p(s) = 3s2 – 6s + 4, find the value of
is
1) 4
2) 8
3) 6
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of then other two zeroes is
1) -c/a
2) c/a
3) 0
4) -b/a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If α and β are zeroes of the polynomial f(x)=x2+px+q then find the quadratic polynomial having 1/α and 1/β as its zeroes
1) 2
2) 1
3) -1
4) 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If α and β are the zeroes of the polynomial f(x) = x2 – 5x + k such that α – β = 1, then value of k is:
(1) 8
(2) 6
(3) 13 / 2
(4) 4
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If a and b are the zeroes of the polynomial x2-11x +30, Find the value of a3 + b3
1) 134
2) 412
3) 256
4) 341
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |