Polynomials
If one of the zeroes of the quadratic polynomial (k-1)x2 + kx + 1 is -3,then the value of k is
1) -4/3
2) 4/3
3) 2/3
4) -2/3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
Given that two of the zeroes of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is
1) -b /a
2) b /a
3) c /a
4) -d /a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |
Polynomials
If one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of then other two zeroes is
1) -c/a
2) c/a
3) 0
4) -b/a
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 2 Solution : -. |
Polynomials
If the polynomial x3 + 2x2 - αx - 12 is divided by (x - 4) the remainder is 52. Find the value of
1) 11 / 2
2) - 5
3) 8
4) - 8
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If zeroes of the quadratic polynomial x2+(a+1)x+b are 2 and -3 then find the value of a and b
1) 0, 6
2) 1, -6
3) 0, -6
4) -6, 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then
1) c and a have opposite signs
2) c and b have opposite signs
3) c and a have the same sign
4) c and b have the same sign
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
Find the remainder when x4+x3-2x2+x+1 is divided by x-1
1) 1
2) 5
3) 2
4) 3
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 3 Solution : -. |
Polynomials
If α and β are zeroes of the polynomial f(x)=x2+px+q then find the quadratic polynomial having 1/α and 1/β as its zeroes
1) 2
2) 1
3) -1
4) 0
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 4 Solution : -. |
Polynomials
On dividing f(x) = x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 and – 2x + 4, respectively. Find g(x)..
1) x2 – x + 1
2) x2 + x + 1
3) x2 – x – 1
4) x3 – x2 + x + 1
A. | Option 1 |
B. | Option 2 |
C. | Option 3 |
D. | Option 4 |
Option: 1 Solution : -. |